Pandas:将 DataFrameGroupBy 对象转换为所需的格式

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/21111836/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:33:52  来源:igfitidea点击:

Pandas: transforming the DataFrameGroupBy object to desired format

pythongroup-bypandasdataframe

提问by Zhubarb

I have a data frame as follows:

我有一个数据框如下:

import pandas as pd
import numpy as np
df = pd.DataFrame({'id' : range(1,9),
                   'code' : ['one', 'one', 'two', 'three',
                             'two', 'three', 'one', 'two'],
                   'colour': ['black', 'white','white','white',
                           'black', 'black', 'white', 'white'],
                   'amount' : np.random.randn(8)},  columns= ['id','code','colour','amount'])

I want to be able to group the ids by codeand colourand then sort them with respect to amount.I know how to groupby():

我希望能够到组idS按codecolour,然后排序他们就amount我知道如何groupby()

df.groupby(['code','colour']).head(5)
                id   code colour    amount
code  colour                              
one   black  0   1    one  black -0.117307
      white  1   2    one  white  1.653216
             6   7    one  white  0.817205
three black  5   6  three  black  0.567162
      white  3   4  three  white  0.579074
two   black  4   5    two  black -1.683988
      white  2   3    two  white -0.457722
             7   8    two  white -1.277020

However, my desired output is as below, where I have two columns: 1.code/colourcontains the key strings and 2.id:amountcontains id- amounttuples sorted in descending order wrt amount:

但是,我想要的输出如下,我有两列: 1.code/colour包含关键字符串和 2.id:amount包含id-amount按降序排序的元组 wrt amount

code/colour  id:amount
one/black    {1:-0.117307}
one/white    {2:1.653216, 7:0.817205}
three/black  {6:0.567162}
three/white  {4:0.579074}
two/black    {5:-1.683988}
two/white    {3:-0.457722, 8:-1.277020}

How can I transform the DataFrameGroupByobject displayed above to my desired format? Or, shall I not use groupby()in the first place?

如何DataFrameGroupBy将上面显示的对象转换为我想要的格式?或者,我一开始就不应该使用groupby()吗?

EDIT:Although not in the specified format, the code below kind of gives me the functionality I want:

编辑:虽然不是指定的格式,但下面的代码给了我我想要的功能:

groups = dict(list(df.groupby(['code','colour'])))
groups['one','white']
   id code colour    amount
1   2  one  white  1.331766
6   7  one  white  0.808739

How can I reduce the groups to only include the idand amountcolumn?

如何减少组以仅包含idamount列?

回答by waitingkuo

First, groupby code and colour and then apply a customized function to format id and amount:

首先,groupby 代码和颜色,然后应用自定义函数来格式化 id 和数量:

df = df.groupby(['code', 'colour']).apply(lambda x:x.set_index('id').to_dict('dict')['amount'])

And then modify the index:

然后修改索引:

df.index = ['/'.join(i) for i in df.index]

It will return a series, you can convert it back to DataFrame by:

它将返回一个系列,您可以通过以下方式将其转换回 DataFrame:

df = df.reset_index()

Finally, add the column names by:

最后,通过以下方式添加列名:

df.columns=['code/colour','id:amount']

Result:

结果:

In [105]: df
Out[105]: 
   code/colour                               id:amount
0    one/black                     {1: 0.392264412544}
1    one/white  {2: 2.13950686015, 7: -0.393002947047}
2  three/black                      {6: -2.0766612539}
3  three/white                     {4: -1.18058561325}
4    two/black                     {5: -1.51959565941}
5    two/white  {8: -1.7659863039, 3: -0.595666853895}

回答by Nipun Batra

Here is an "ugly" way of doing this. First things first- your desired output will not play so well within Pandas since dictis unhashable; so you may lose the real benefit!

这是一种“丑陋”的方法。首先,您想要的输出在 Pandas 中不会表现得很好,因为它dict是不可散列的;所以你可能会失去真正的好处!

od = OrderedDict()
for name, group in df.groupby(['code', 'colour']):
    # Convert the group to a dict
    temp = group[['id', 'amount']].sort(['amount'], ascending=[0]).to_dict()
    # Extract id:amount
    temp2 = {temp['id'][key]: temp['amount'][key] for key in temp['amount'].iterkeys()}
    od["%s/%s" % (name)] = temp2

This is only a start! Not exactly what you are looking for.

这只是一个开始!不完全是你正在寻找的。