pandas 计算熊猫系列的*滚动*最大回撤
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/21058333/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Compute *rolling* maximum drawdown of pandas Series
提问by 8one6
It's pretty easy to write a function that computes the maximum drawdown of a time series. It takes a small bit of thinking to write it in O(n)time instead of O(n^2)time. But it's not that bad. This will work:
编写一个计算时间序列最大回撤的函数非常容易。O(n)及时而不是O(n^2)时间写它需要一点点思考。但也没有那么糟糕。这将起作用:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def max_dd(ser):
max2here = pd.expanding_max(ser)
dd2here = ser - max2here
return dd2here.min()
Let's set up a brief series to play with to try it out:
让我们设置一个简短的系列来尝试一下:
np.random.seed(0)
n = 100
s = pd.Series(np.random.randn(n).cumsum())
s.plot()
plt.show()


As expected, max_dd(s)winds up showing something right around -17.6. Good, great, grand. Now say I'm interested in computing the rolling drawdown of this Series. I.e. for each step, I want to compute the maximum drawdown from the preceding sub series of a specified length. This is easy to do using pd.rolling_apply. It works like so:
正如预期的那样,max_dd(s)结果显示在 -17.6 左右。好,好,大。现在说我对计算这个系列的滚动回撤感兴趣。即对于每一步,我想计算指定长度的前一个子系列的最大回撤。使用pd.rolling_apply. 它的工作原理是这样的:
rolling_dd = pd.rolling_apply(s, 10, max_dd, min_periods=0)
df = pd.concat([s, rolling_dd], axis=1)
df.columns = ['s', 'rol_dd_10']
df.plot()


This works perfectly. But it feels very slow. Is there a particularly slick algorithm in pandas or another toolkit to do this fast? I took a shot at writing something bespoke: it keeps track of all sorts of intermediate data (locations of observed maxima, locations of previously found drawdowns) to cut down on lots of redundant calculations. It does save some time, but not a whole lot, and not nearly as much as should be possible.
这完美地工作。但是感觉很慢。在 Pandas 或其他工具包中是否有一种特别灵巧的算法来快速做到这一点?我尝试编写一些定制的东西:它跟踪各种中间数据(观察到的最大值的位置,先前发现的下降位置)以减少大量冗余计算。它确实节省了一些时间,但不是很多,也没有尽可能多。
I think it's because of all the looping overhead in Python/Numpy/Pandas. But I'm not currently fluent enough in Cython to really know how to begin attacking this from that angle. I was hoping someone had tried this before. Or, perhaps, that someone might want to have a look at my "handmade" code and be willing to help me convert it to Cython.
我认为这是因为 Python/Numpy/Pandas 中的所有循环开销。但是我目前在 Cython 中不够流利,无法真正知道如何从这个角度开始攻击。我希望有人以前试过这个。或者,也许有人想看看我的“手工”代码并愿意帮助我将其转换为 Cython。
Edit: For anyone who wants a review of all the functions mentioned here (and some others!) have a look at the iPython notebook at: http://nbviewer.ipython.org/gist/8one6/8506455
编辑:对于想要查看此处提到的所有功能(以及其他一些功能!)的任何人,请查看 iPython 笔记本:http://nbviewer.ipython.org/gist/8one6/8506455
It shows how some of the approaches to this problem relate, checks that they give the same results, and shows their runtimes on data of various sizes.
它显示了解决这个问题的一些方法是如何关联的,检查它们是否给出相同的结果,并显示它们在不同大小的数据上的运行时间。
If anyone is interested, the "bespoke" algorithm I alluded to in my post is rolling_dd_custom. I think that could be a very fast solution if implemented in Cython.
如果有人感兴趣,我在帖子中提到的“定制”算法是rolling_dd_custom. 我认为如果在 Cython 中实施,这可能是一个非常快速的解决方案。
采纳答案by Warren Weckesser
Here's a numpy version of the rolling maximum drawdown function. windowed_viewis a wrapper of a one-line function that uses numpy.lib.stride_tricks.as_stridedto make a memory efficient 2d windowed view of the 1d array (full code below). Once we have this windowed view, the calculation is basically the same as your max_dd, but written for a numpy array, and applied along the second axis (i.e. axis=1).
这是滚动最大回撤函数的 numpy 版本。 windowed_view是一个单行函数的包装器,用于制作一维numpy.lib.stride_tricks.as_strided数组的内存高效的二维窗口视图(完整代码如下)。一旦我们有了这个窗口视图,计算就与您的 基本相同max_dd,但是是为一个 numpy 数组编写的,并沿第二个轴(即axis=1)应用。
def rolling_max_dd(x, window_size, min_periods=1):
"""Compute the rolling maximum drawdown of `x`.
`x` must be a 1d numpy array.
`min_periods` should satisfy `1 <= min_periods <= window_size`.
Returns an 1d array with length `len(x) - min_periods + 1`.
"""
if min_periods < window_size:
pad = np.empty(window_size - min_periods)
pad.fill(x[0])
x = np.concatenate((pad, x))
y = windowed_view(x, window_size)
running_max_y = np.maximum.accumulate(y, axis=1)
dd = y - running_max_y
return dd.min(axis=1)
Here's a complete script that demonstrates the function:
这是演示该功能的完整脚本:
import numpy as np
from numpy.lib.stride_tricks import as_strided
import pandas as pd
import matplotlib.pyplot as plt
def windowed_view(x, window_size):
"""Creat a 2d windowed view of a 1d array.
`x` must be a 1d numpy array.
`numpy.lib.stride_tricks.as_strided` is used to create the view.
The data is not copied.
Example:
>>> x = np.array([1, 2, 3, 4, 5, 6])
>>> windowed_view(x, 3)
array([[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6]])
"""
y = as_strided(x, shape=(x.size - window_size + 1, window_size),
strides=(x.strides[0], x.strides[0]))
return y
def rolling_max_dd(x, window_size, min_periods=1):
"""Compute the rolling maximum drawdown of `x`.
`x` must be a 1d numpy array.
`min_periods` should satisfy `1 <= min_periods <= window_size`.
Returns an 1d array with length `len(x) - min_periods + 1`.
"""
if min_periods < window_size:
pad = np.empty(window_size - min_periods)
pad.fill(x[0])
x = np.concatenate((pad, x))
y = windowed_view(x, window_size)
running_max_y = np.maximum.accumulate(y, axis=1)
dd = y - running_max_y
return dd.min(axis=1)
def max_dd(ser):
max2here = pd.expanding_max(ser)
dd2here = ser - max2here
return dd2here.min()
if __name__ == "__main__":
np.random.seed(0)
n = 100
s = pd.Series(np.random.randn(n).cumsum())
window_length = 10
rolling_dd = pd.rolling_apply(s, window_length, max_dd, min_periods=0)
df = pd.concat([s, rolling_dd], axis=1)
df.columns = ['s', 'rol_dd_%d' % window_length]
df.plot(linewidth=3, alpha=0.4)
my_rmdd = rolling_max_dd(s.values, window_length, min_periods=1)
plt.plot(my_rmdd, 'g.')
plt.show()
The plot shows the curves generated by your code. The green dots are computed by rolling_max_dd.
该图显示了由您的代码生成的曲线。绿点由 计算rolling_max_dd。


Timing comparison, with n = 10000and window_length = 500:
时序比较,使用n = 10000和window_length = 500:
In [2]: %timeit rolling_dd = pd.rolling_apply(s, window_length, max_dd, min_periods=0)
1 loops, best of 3: 247 ms per loop
In [3]: %timeit my_rmdd = rolling_max_dd(s.values, window_length, min_periods=1)
10 loops, best of 3: 38.2 ms per loop
rolling_max_ddis about 6.5 times faster. The speedup is better for smaller window lengths. For example, with window_length = 200, it is almost 13 times faster.
rolling_max_dd大约快 6.5 倍。对于较小的窗口长度,加速效果更好。例如,使用window_length = 200,它几乎快了 13 倍。
To handle NA's, you could preprocess the Seriesusing the fillnamethod before passing the array to rolling_max_dd.
为了处理不适用的,你可以预处理Series使用fillna数组传递给方法之前rolling_max_dd。
回答by 8one6
For the sake of posterity and for completeness, here's what I wound up with in Cython. MemoryViews materially sped things up. There was a bit of work to do to make sure I'd properly typed everything (sorry, new to c-type languages). But in the end I think it works nicely. For typical use cases, the speedup vs regular python was ~100x or ~150x. The function to call is cy_rolling_dd_custom_mvwhere the first argument (ser) should be a 1-d numpy array and the second argument (window) should be a positive integer. The function returns a numpy memoryview, which works well enough in most cases. You can explicitly call np.array(result)if you need to to get a nice array of the output:
为了后代和完整性,这就是我在 Cython 中得出的结论。MemoryViews 大大加快了速度。有一些工作要做,以确保我正确输入了所有内容(对不起,c 类型语言的新手)。但最后我认为它很好用。对于典型的用例,与常规 python 的加速比为 ~100x 或 ~150x。要调用的函数是cy_rolling_dd_custom_mv第一个参数 ( ser) 应该是一维 numpy 数组,第二个参数 ( window) 应该是一个正整数。该函数返回一个 numpy 内存视图,在大多数情况下效果很好。np.array(result)如果您需要获得一个不错的输出数组,您可以显式调用:
import numpy as np
cimport numpy as np
cimport cython
DTYPE = np.float64
ctypedef np.float64_t DTYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cpdef tuple cy_dd_custom_mv(double[:] ser):
cdef double running_global_peak = ser[0]
cdef double min_since_global_peak = ser[0]
cdef double running_max_dd = 0
cdef long running_global_peak_id = 0
cdef long running_max_dd_peak_id = 0
cdef long running_max_dd_trough_id = 0
cdef long i
cdef double val
for i in xrange(ser.shape[0]):
val = ser[i]
if val >= running_global_peak:
running_global_peak = val
running_global_peak_id = i
min_since_global_peak = val
if val < min_since_global_peak:
min_since_global_peak = val
if val - running_global_peak <= running_max_dd:
running_max_dd = val - running_global_peak
running_max_dd_peak_id = running_global_peak_id
running_max_dd_trough_id = i
return (running_max_dd, running_max_dd_peak_id, running_max_dd_trough_id, running_global_peak_id)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def cy_rolling_dd_custom_mv(double[:] ser, long window):
cdef double[:, :] result
result = np.zeros((ser.shape[0], 4))
cdef double running_global_peak = ser[0]
cdef double min_since_global_peak = ser[0]
cdef double running_max_dd = 0
cdef long running_global_peak_id = 0
cdef long running_max_dd_peak_id = 0
cdef long running_max_dd_trough_id = 0
cdef long i
cdef double val
cdef int prob_1
cdef int prob_2
cdef tuple intermed
cdef long newthing
for i in xrange(ser.shape[0]):
val = ser[i]
if i < window:
if val >= running_global_peak:
running_global_peak = val
running_global_peak_id = i
min_since_global_peak = val
if val < min_since_global_peak:
min_since_global_peak = val
if val - running_global_peak <= running_max_dd:
running_max_dd = val - running_global_peak
running_max_dd_peak_id = running_global_peak_id
running_max_dd_trough_id = i
result[i, 0] = <double>running_max_dd
result[i, 1] = <double>running_max_dd_peak_id
result[i, 2] = <double>running_max_dd_trough_id
result[i, 3] = <double>running_global_peak_id
else:
prob_1 = 1 if result[i-1, 3] <= float(i - window) else 0
prob_2 = 1 if result[i-1, 1] <= float(i - window) else 0
if prob_1 or prob_2:
intermed = cy_dd_custom_mv(ser[i-window+1:i+1])
result[i, 0] = <double>intermed[0]
result[i, 1] = <double>(intermed[1] + i - window + 1)
result[i, 2] = <double>(intermed[2] + i - window + 1)
result[i, 3] = <double>(intermed[3] + i - window + 1)
else:
newthing = <long>(int(result[i-1, 3]))
result[i, 3] = i if ser[i] >= ser[newthing] else result[i-1, 3]
if val - ser[newthing] <= result[i-1, 0]:
result[i, 0] = <double>(val - ser[newthing])
result[i, 1] = <double>result[i-1, 3]
result[i, 2] = <double>i
else:
result[i, 0] = <double>result[i-1, 0]
result[i, 1] = <double>result[i-1, 1]
result[i, 2] = <double>result[i-1, 2]
cdef double[:] finalresult = result[:, 0]
return finalresult
回答by Joel Richard
Here is a Numba-accelerated solution:
这是一个 Numba 加速的解决方案:
import pandas as pd
import numpy as np
import numba
from time import time
n = 10000
returns = pd.Series(np.random.normal(1.001, 0.01, n), pd.date_range("2020-01-01", periods=n, freq="1min"))
@numba.njit
def max_drawdown(cum_returns):
max_drawdown = 0.0
current_max_ret = cum_returns[0]
for ret in cum_returns:
if ret > current_max_ret:
current_max_ret = ret
max_drawdown = max(max_drawdown, 1 - ret / current_max_ret)
return max_drawdown
t = time()
rolling_1h_max_dd = returns.cumprod().rolling("1h").apply(max_drawdown, raw=True)
print("Fast:", time() - t);
def max_drawdown_slow(x):
return (1 - x / x.cummax()).max()
t = time()
rolling_1h_max_dd_slow = returns.cumprod().rolling("1h").apply(max_drawdown_slow, raw=False)
print("Slow:", time() - t);
assert rolling_1h_max_dd.equals(rolling_1h_max_dd_slow)
Output:
输出:
Fast: 0.05633878707885742
Slow: 4.540301084518433
=> 80x speedup
=> 80 倍加速
回答by litepresence
# BEGIN: TRADEWAVE MOVING AVERAGE CROSSOVER EXAMPLE
THRESHOLD = 0.005
INTERVAL = 43200
SHORT = 10
LONG = 90
def initialize():
storage.invested = storage.get('invested', False)
def tick():
short_term = data(interval=INTERVAL).btc_usd.ma(SHORT)
long_term = data(interval=INTERVAL).btc_usd.ma(LONG)
diff = 100 * (short_term - long_term) / ((short_term + long_term) / 2)
if diff >= THRESHOLD and not storage.invested:
buy(pairs.btc_usd)
storage.invested = True
elif diff <= -THRESHOLD and storage.invested:
sell(pairs.btc_usd)
storage.invested = False
plot('short_term', short_term)
plot('long_term', long_term)
# END: TRADEWAVE MOVING AVERAGE CROSSOVER EXAMPLE
##############################################################
##############################################################
# BEGIN MAX DRAW DOWN by litepresence
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
dd()
ROLLING = 30 # days
def dd():
dd, storage.max_dd = max_dd(0)
bnh_dd, storage.max_bnh_dd = bnh_max_dd(0)
rolling_dd, storage.max_rolling_dd = max_dd(
ROLLING*86400/info.interval)
rolling_bnh_dd, storage.max_rolling_bnh_dd = bnh_max_dd(
ROLLING*86400/info.interval)
plot('dd', dd, secondary=True)
plot('bnh_dd', bnh_dd, secondary=True)
plot('rolling_dd', rolling_dd, secondary=True)
plot('rolling_bnh_dd', rolling_bnh_dd, secondary=True)
plot('zero', 0, secondary=True)
if info.tick == 0:
plot('dd_floor', -200, secondary=True)
def max_dd(rolling):
port_value = float(portfolio.usd+portfolio.btc*data.btc_usd.price)
max_value = 'max_value_' + str(rolling)
values_since_max = 'values_since_max_' + str(rolling)
max_dd = 'max_dd_' + str(rolling)
storage[max_value] = storage.get(max_value, [port_value])
storage[values_since_max] = storage.get(values_since_max, [port_value])
storage[max_dd] = storage.get(max_dd, [0])
storage[max_value].append(port_value)
if port_value > max(storage[max_value]):
storage[values_since_max] = [port_value]
else:
storage[values_since_max].append(port_value)
storage[max_value] = storage[max_value][-rolling:]
storage[values_since_max] = storage[values_since_max][-rolling:]
dd = -100*(max(storage[max_value]) - storage[values_since_max][-1]
)/max(storage[max_value])
storage[max_dd].append(float(dd))
storage[max_dd] = storage[max_dd][-rolling:]
max_dd = min(storage[max_dd])
return (dd, max_dd)
def bnh_max_dd(rolling):
coin = data.btc_usd.price
bnh_max_value = 'bnh_max_value_' + str(rolling)
bnh_values_since_max = 'bnh_values_since_max_' + str(rolling)
bnh_max_dd = 'bnh_max_dd_' + str(rolling)
storage[bnh_max_value] = storage.get(bnh_max_value, [coin])
storage[bnh_values_since_max] = storage.get(bnh_values_since_max, [coin])
storage[bnh_max_dd] = storage.get(bnh_max_dd, [0])
storage[bnh_max_value].append(coin)
if coin > max(storage[bnh_max_value]):
storage[bnh_values_since_max] = [coin]
else:
storage[bnh_values_since_max].append(coin)
storage[bnh_max_value] = storage[bnh_max_value][-rolling:]
storage[bnh_values_since_max] = storage[bnh_values_since_max][-rolling:]
bnh_dd = -100*(max(storage[bnh_max_value]) - storage[bnh_values_since_max][-1]
)/max(storage[bnh_max_value])
storage[bnh_max_dd].append(float(bnh_dd))
storage[bnh_max_dd] = storage[bnh_max_dd][-rolling:]
bnh_max_dd = min(storage[bnh_max_dd])
return (bnh_dd, bnh_max_dd)
def stop():
log('MAX DD......: %.2f pct' % storage.max_dd)
log('R MAX DD....: %.2f pct' % storage.max_rolling_dd)
log('MAX BNH DD..: %.2f pct' % storage.max_bnh_dd)
log('R MAX BNH DD: %.2f pct' % storage.max_rolling_bnh_dd)


[2015-03-04 00:00:00] MAX DD......: -67.94 pct
[2015-03-04 00:00:00] R MAX DD....: -4.93 pct
[2015-03-04 00:00:00] MAX BNH DD..: -82.88 pct
[2015-03-04 00:00:00] R MAX BNH DD: -26.38 pct
- Draw Down
- Max Drawn Down
- Buy and Hold Draw Down
- Buy and Hold Max Draw Down
- Rolling Draw Down
- Rolling Max Drawn Down
- Rolling Buy and Hold Draw Down
- Rolling Buy and Hold Max Draw Down
- 画下来
- 最大下降
- 买入并持有回撤
- 买入并持有最大回撤
- 滚动抽签
- 滚动最大下拉
- 滚动买入并持有回撤
- 滚动买入并持有最大回撤
No pandas, cython, or numpy dependencies. All calculations via simple lists.
没有 pandas、cython 或 numpy 依赖项。通过简单列表的所有计算。
Definitions are reusable for multiple rolling window sizes in the same script. You will have to edit the series input for your platform as this is designed for Bitcoin trading at tradewave.net
定义可在同一脚本中为多个滚动窗口大小重复使用。您必须为您的平台编辑系列输入,因为这是专为在 tradewave.net 上进行比特币交易而设计的
回答by DaManJ
Hello people. This is quite a complex problem if you want to solve this in a computationally efficient way for a rolling window. I have gone ahead and written a solution to this in C#. I want to share this as the effort required to replicate this work is quite high.
大家好。如果您想以计算效率高的方式为滚动窗口解决这个问题,这是一个相当复杂的问题。我已经用 C# 写了一个解决方案。我想分享这一点,因为复制这项工作所需的努力非常高。
First, here are the results:
首先,这里是结果:
here we take a simple drawdown implementation and re-calculate for the full window each time
这里我们采用一个简单的回撤实现,每次都重新计算整个窗口
test1 - simple drawdown test with 30 period rolling window. run 100 times.
total seconds 0.8060461
test2 - simple drawdown test with 60 period rolling window. run 100 times.
total seconds 1.416081
test3 - simple drawdown test with 180 period rolling window. run 100 times.
total seconds 3.6602093
test4 - simple drawdown test with 360 period rolling window. run 100 times.
total seconds 6.696383
test5 - simple drawdown test with 500 period rolling window. run 100 times.
total seconds 8.9815137
here we compare to the results generated from my efficient rolling window algorithm where only the latest observation is added and then it does it's magic
在这里,我们与我的高效滚动窗口算法生成的结果进行比较,其中只添加了最新的观察结果,然后它就变得很神奇
test6 - running drawdown test with 30 period rolling window. run 100 times.
total seconds 0.2940168
test7 - running drawdown test with 60 period rolling window. run 100 times.
total seconds 0.3050175
test8 - running drawdown test with 180 period rolling window. run 100 times.
total seconds 0.3780216
test9 - running drawdown test with 360 period rolling window. run 100 times.
total seconds 0.4560261
test10 - running drawdown test with 500 period rolling window. run 100 times.
total seconds 0.5050288
At at 500 period window. We are achieving about a 20:1 improvement in calculation time.
在 500 周期窗口。我们正在实现大约 20:1 的计算时间改进。
Here is the code of the simple drawdown class used for the comparisons:
这是用于比较的简单回撤类的代码:
public class SimpleDrawDown
{
public double Peak { get; set; }
public double Trough { get; set; }
public double MaxDrawDown { get; set; }
public SimpleDrawDown()
{
Peak = double.NegativeInfinity;
Trough = double.PositiveInfinity;
MaxDrawDown = 0;
}
public void Calculate(double newValue)
{
if (newValue > Peak)
{
Peak = newValue;
Trough = Peak;
}
else if (newValue < Trough)
{
Trough = newValue;
var tmpDrawDown = Peak - Trough;
if (tmpDrawDown > MaxDrawDown)
MaxDrawDown = tmpDrawDown;
}
}
}
And here is the code for the full efficient implementation. Hopefully the code comments make sense.
这是完整高效实现的代码。希望代码注释有意义。
internal class DrawDown
{
int _n;
int _startIndex, _endIndex, _troughIndex;
public int Count { get; set; }
LinkedList<double> _values;
public double Peak { get; set; }
public double Trough { get; set; }
public bool SkipMoveBackDoubleCalc { get; set; }
public int PeakIndex
{
get
{
return _startIndex;
}
}
public int TroughIndex
{
get
{
return _troughIndex;
}
}
//peak to trough return
public double DrawDownAmount
{
get
{
return Peak - Trough;
}
}
/// <summary>
///
/// </summary>
/// <param name="n">max window for drawdown period</param>
/// <param name="peak">drawdown peak i.e. start value</param>
public DrawDown(int n, double peak)
{
_n = n - 1;
_startIndex = _n;
_endIndex = _n;
_troughIndex = _n;
Count = 1;
_values = new LinkedList<double>();
_values.AddLast(peak);
Peak = peak;
Trough = peak;
}
/// <summary>
/// adds a new observation on the drawdown curve
/// </summary>
/// <param name="newValue"></param>
public void Add(double newValue)
{
//push the start of this drawdown backwards
//_startIndex--;
//the end of the drawdown is the current period end
_endIndex = _n;
//the total periods increases with a new observation
Count++;
//track what all point values are in the drawdown curve
_values.AddLast(newValue);
//update if we have a new trough
if (newValue < Trough)
{
Trough = newValue;
_troughIndex = _endIndex;
}
}
/// <summary>
/// Shift this Drawdown backwards in the observation window
/// </summary>
/// <param name="trackingNewPeak">whether we are already tracking a new peak or not</param>
/// <returns>a new drawdown to track if a new peak becomes active</returns>
public DrawDown MoveBack(bool trackingNewPeak, bool recomputeWindow = true)
{
if (!SkipMoveBackDoubleCalc)
{
_startIndex--;
_endIndex--;
_troughIndex--;
if (recomputeWindow)
return RecomputeDrawdownToWindowSize(trackingNewPeak);
}
else
SkipMoveBackDoubleCalc = false;
return null;
}
private DrawDown RecomputeDrawdownToWindowSize(bool trackingNewPeak)
{
//the start of this drawdown has fallen out of the start of our observation window, so we have to recalculate the peak of the drawdown
if (_startIndex < 0)
{
Peak = double.NegativeInfinity;
_values.RemoveFirst();
Count--;
//there is the possibility now that there is a higher peak, within the current drawdown curve, than our first observation
//when we find it, remove all data points prior to this point
//the new peak must be before the current known trough point
int iObservation = 0, iNewPeak = 0, iNewTrough = _troughIndex, iTmpNewPeak = 0, iTempTrough = 0;
double newDrawDown = 0, tmpPeak = 0, tmpTrough = double.NegativeInfinity;
DrawDown newDrawDownObj = null;
foreach (var pointOnDrawDown in _values)
{
if (iObservation < _troughIndex)
{
if (pointOnDrawDown > Peak)
{
iNewPeak = iObservation;
Peak = pointOnDrawDown;
}
}
else if (iObservation == _troughIndex)
{
newDrawDown = Peak - Trough;
tmpPeak = Peak;
}
else
{
//now continue on through the remaining points, to determine if there is a nested-drawdown, that is now larger than the newDrawDown
//e.g. higher peak beyond _troughIndex, with higher trough than that at _troughIndex, but where new peak minus new trough is > newDrawDown
if (pointOnDrawDown > tmpPeak)
{
tmpPeak = pointOnDrawDown;
tmpTrough = tmpPeak;
iTmpNewPeak = iObservation;
//we need a new drawdown object, as we have a new higher peak
if (!trackingNewPeak)
newDrawDownObj = new DrawDown(_n + 1, tmpPeak);
}
else
{
if (!trackingNewPeak && newDrawDownObj != null)
{
newDrawDownObj.MoveBack(true, false); //recomputeWindow is irrelevant for this as it will never fall before period 0 in this usage scenario
newDrawDownObj.Add(pointOnDrawDown); //keep tracking this new drawdown peak
}
if (pointOnDrawDown < tmpTrough)
{
tmpTrough = pointOnDrawDown;
iTempTrough = iObservation;
var tmpDrawDown = tmpPeak - tmpTrough;
if (tmpDrawDown > newDrawDown)
{
newDrawDown = tmpDrawDown;
iNewPeak = iTmpNewPeak;
iNewTrough = iTempTrough;
Peak = tmpPeak;
Trough = tmpTrough;
}
}
}
}
iObservation++;
}
_startIndex = iNewPeak; //our drawdown now starts from here in our observation window
_troughIndex = iNewTrough;
for (int i = 0; i < _startIndex; i++)
{
_values.RemoveFirst(); //get rid of the data points prior to this new drawdown peak
Count--;
}
return newDrawDownObj;
}
return null;
}
}
public class RunningDrawDown
{
int _n;
List<DrawDown> _drawdownObjs;
DrawDown _currentDrawDown;
DrawDown _maxDrawDownObj;
/// <summary>
/// The Peak of the MaxDrawDown
/// </summary>
public double DrawDownPeak
{
get
{
if (_maxDrawDownObj == null) return double.NegativeInfinity;
return _maxDrawDownObj.Peak;
}
}
/// <summary>
/// The Trough of the Max DrawDown
/// </summary>
public double DrawDownTrough
{
get
{
if (_maxDrawDownObj == null) return double.PositiveInfinity;
return _maxDrawDownObj.Trough;
}
}
/// <summary>
/// The Size of the DrawDown - Peak to Trough
/// </summary>
public double DrawDown
{
get
{
if (_maxDrawDownObj == null) return 0;
return _maxDrawDownObj.DrawDownAmount;
}
}
/// <summary>
/// The Index into the Window that the Peak of the DrawDown is seen
/// </summary>
public int PeakIndex
{
get
{
if (_maxDrawDownObj == null) return 0;
return _maxDrawDownObj.PeakIndex;
}
}
/// <summary>
/// The Index into the Window that the Trough of the DrawDown is seen
/// </summary>
public int TroughIndex
{
get
{
if (_maxDrawDownObj == null) return 0;
return _maxDrawDownObj.TroughIndex;
}
}
/// <summary>
/// Creates a running window for the calculation of MaxDrawDown within the window
/// </summary>
/// <param name="n">the number of periods within the window</param>
public RunningDrawDown(int n)
{
_n = n;
_currentDrawDown = null;
_drawdownObjs = new List<DrawDown>();
}
/// <summary>
/// The new value to add onto the end of the current window (the first value will drop off)
/// </summary>
/// <param name="newValue">the new point on the curve</param>
public void Calculate(double newValue)
{
if (double.IsNaN(newValue)) return;
if (_currentDrawDown == null)
{
var drawDown = new DrawDown(_n, newValue);
_currentDrawDown = drawDown;
_maxDrawDownObj = drawDown;
}
else
{
//shift current drawdown back one. and if the first observation falling outside the window means we encounter a new peak after the current trough, we start tracking a new drawdown
var drawDownFromNewPeak = _currentDrawDown.MoveBack(false);
//this is a special case, where a new lower peak (now the highest) is created due to the drop of of the pre-existing highest peak, and we are not yet tracking a new peak
if (drawDownFromNewPeak != null)
{
_drawdownObjs.Add(_currentDrawDown); //record this drawdown into our running drawdowns list)
_currentDrawDown.SkipMoveBackDoubleCalc = true; //MoveBack() is calculated again below in _drawdownObjs collection, so we make sure that is skipped this first time
_currentDrawDown = drawDownFromNewPeak;
_currentDrawDown.MoveBack(true);
}
if (newValue > _currentDrawDown.Peak)
{
//we need a new drawdown object, as we have a new higher peak
var drawDown = new DrawDown(_n, newValue);
//do we have an existing drawdown object, and does it have more than 1 observation
if (_currentDrawDown.Count > 1)
{
_drawdownObjs.Add(_currentDrawDown); //record this drawdown into our running drawdowns list)
_currentDrawDown.SkipMoveBackDoubleCalc = true; //MoveBack() is calculated again below in _drawdownObjs collection, so we make sure that is skipped this first time
}
_currentDrawDown = drawDown;
}
else
{
//add the new observation to the current drawdown
_currentDrawDown.Add(newValue);
}
}
//does our new drawdown surpass any of the previous drawdowns?
//if so, we can drop the old drawdowns, as for the remainer of the old drawdowns lives in our lookup window, they will be smaller than the new one
var newDrawDown = _currentDrawDown.DrawDownAmount;
_maxDrawDownObj = _currentDrawDown;
var maxDrawDown = newDrawDown;
var keepDrawDownsList = new List<DrawDown>();
foreach (var drawDownObj in _drawdownObjs)
{
drawDownObj.MoveBack(true);
if (drawDownObj.DrawDownAmount > newDrawDown)
{
keepDrawDownsList.Add(drawDownObj);
}
//also calculate our max drawdown here
if (drawDownObj.DrawDownAmount > maxDrawDown)
{
maxDrawDown = drawDownObj.DrawDownAmount;
_maxDrawDownObj = drawDownObj;
}
}
_drawdownObjs = keepDrawDownsList;
}
}
Example usage:
用法示例:
RunningDrawDown rd = new RunningDrawDown(500);
foreach (var input in data)
{
rd.Calculate(input);
Console.WriteLine(string.Format("max draw {0:0.00000}, peak {1:0.00000}, trough {2:0.00000}, drawstart {3:0.00000}, drawend {4:0.00000}",
rd.DrawDown, rd.DrawDownPeak, rd.DrawDownTrough, rd.PeakIndex, rd.TroughIndex));
}

