pandas 连接熊猫中相同索引的行值

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31243352/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:34:30  来源:igfitidea点击:

concatenate row values for the same index in pandas

pythonpandas

提问by alkamid

My initial DataFrame looks as follows:

我的初始 DataFrame 如下所示:

   A    B  quantity
0  1  foo         1
1  1  baz         2
2  1  bar         2
3  1  faz         1
4  2  foo         2
5  2  bar         1
6  3  foo         3

I need to group it by 'A' and make a list of 'B' multiplied by 'quantity':

我需要将它按“A”分组,并列出“B”乘以“数量”:

   A                               B
0  1  [foo, baz, baz, bar, bar, faz]
1  2                 [foo, foo, bar]
2  3                 [foo, foo, foo]

Currently I'm using groupby() and then apply():

目前我正在使用 groupby() 然后 apply():

def itemsToList(tdf, column):

    collist = []
    for row in tdf[column].iteritems():
        collist = collist + tdf['quantity'][row[0]]*[row[1]]

    return pd.Series({column: collist})

gb = df.groupby('A').apply(itemsToList, 'B')

I doubt it is an efficient way, so I'm looking for a good, "pandaic" method to achieve this.

我怀疑这是一种有效的方法,所以我正在寻找一种好的、“流行的”方法来实现这一目标。

采纳答案by EdChum

This could be done in 2 steps, generate a new column that creates the expanded str values, then groupbyon 'A' and applylistto this new column:

这可以分两步完成,生成一个新列来创建扩展的 str 值,然后groupby在 'A' 和这个新列上:applylist

In [62]:
df['expand'] = df.apply(lambda x: ','.join([x['B']] * x['quantity']), axis=1)
df.groupby('A')['expand'].apply(list)

Out[62]:
A
1    [foo, baz,baz, bar,bar, faz]
2                  [foo,foo, bar]
3                   [foo,foo,foo]
Name: expand, dtype: object

EDIT

编辑

OK after taking inspirationfrom @Jianxun Li's answer:

服用后确定的灵感来自@Jianxun李的回答是:

In [130]:
df.groupby('A').apply(lambda x: np.repeat(x['B'].values, x['quantity']).tolist())

Out[130]:
A
1    [foo, baz, baz, bar, bar, faz]
2                   [foo, foo, bar]
3                   [foo, foo, foo]
dtype: object

Also this works:

这也有效:

In [131]:
df.groupby('A').apply(lambda x: list(np.repeat(x['B'].values, x['quantity'])))

Out[131]:
A
1    [foo, baz, baz, bar, bar, faz]
2                   [foo, foo, bar]
3                   [foo, foo, foo]
dtype: object

回答by Jianxun Li

Another way to do it. First reshape the dfusing pivot_tableand then applynp.repeat().tolist().

另一种方法来做到这一点。首先重塑dfusingpivot_table然后applynp.repeat().tolist().

import pandas as pd
import numpy as np

df

Out[52]: 
   A    B  quantity
0  1  foo         1
1  1  baz         2
2  1  bar         2
3  1  faz         1
4  2  foo         2
5  2  bar         1
6  3  foo         3

df.pivot('A','B','quantity').fillna(0).apply(lambda row: np.repeat(row.index.values, row.values.astype(int)).tolist(), axis=1)

Out[53]: 
A
1    [bar, bar, baz, baz, faz, foo]
2                   [bar, foo, foo]
3                   [foo, foo, foo]
dtype: object