Python:ufunc 'add' 不包含签名匹配类型 dtype('S21') dtype('S21') dtype('S21') 的循环
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44527956/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python: ufunc 'add' did not contain a loop with signature matching types dtype('S21') dtype('S21') dtype('S21')
提问by jeangelj
I have two dataframes, which both have an Order ID
and a date
.
我有两个数据框,它们都有一个Order ID
和一个date
.
I wanted to add a flag into the first dataframe df1
: if a record with the same order id
and date
is in dataframe df2
, then add a Y
:
我想在第一个数据帧中添加一个标志df1
:如果具有相同order id
且date
位于数据帧中的记录df2
,则添加一个Y
:
[ df1['R'] = np.where(orders['key'].isin(df2['key']), 'Y', 0)]
To accomplish that, I was going to create a key, which would be the concatenation of the order_id
and date
, but when I try the following code:
为了实现这一点,我将创建一个键,它是order_id
and的连接date
,但是当我尝试以下代码时:
df1['key']=df1['Order_ID']+'_'+df1['Date']
I get this error
我收到这个错误
ufunc 'add' did not contain a loop with signature matching types dtype('S21') dtype('S21') dtype('S21')
df1 looks like this:
df1 看起来像这样:
Date | Order_ID | other data points ...
201751 4395674 ...
201762 3487535 ...
These are the datatypes:
这些是数据类型:
df1.info()
RangeIndex: 157443 entries, 0 to 157442
Data columns (total 6 columns):
Order_ID 157429 non-null object
Date 157443 non-null int64
...
dtypes: float64(2), int64(2), object(2)
memory usage: 7.2+ MB
df1['Order_ID'].values
array(['782833030', '782834969', '782836416', ..., '783678018',
'783679806', '783679874'], dtype=object)
回答by MSeifert
The problem is that you can't add an object array (containing strings) to a number array, that's just ambiguous:
问题是您不能将对象数组(包含字符串)添加到数字数组中,这很不明确:
>>> import pandas as pd
>>> pd.Series(['abc', 'def']) + pd.Series([1, 2])
TypeError: ufunc 'add' did not contain a loop with signature matching types dtype('<U21') dtype('<U21') dtype('<U21')
You need to explicitly convert your Dates
to str
.
您需要明确地将您Dates
的str
.
I don't know how to do that efficiently in pandas but you can use:
我不知道如何在 Pandas 中有效地做到这一点,但您可以使用:
df1['key'] = df1['Order_ID'] + '_' + df1['Date'].apply(str) # .apply(str) is new