Python 绘制熊猫 timedelta
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/23543909/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Plotting pandas timedelta
提问by DataSwede
I have a pandas dataframe that has two datetime64 columns and one timedelta64 column that is the difference between the two columns. I'm trying to plot a histogram of the timedelta column to visualize the time differences between the two events.
我有一个 Pandas 数据框,它有两个 datetime64 列和一个 timedelta64 列,这是两列之间的差异。我正在尝试绘制 timedelta 列的直方图以可视化两个事件之间的时间差异。
However, just using df['time_delta']
results in:
TypeError: ufunc add cannot use operands with types dtype('<m8[ns]') and dtype('float64')
但是,仅df['time_delta']
在以下情况下使用结果:
TypeError: ufunc add cannot use operands with types dtype('<m8[ns]') and dtype('float64')
Trying to convert the timedelta column to : float--> df2 = df1['time_delta'].astype(float)
results in:
TypeError: cannot astype a timedelta from [timedelta64[ns]] to [float64]
尝试将 timedelta 列转换为 :float--> df2 = df1['time_delta'].astype(float)
结果:
TypeError: cannot astype a timedelta from [timedelta64[ns]] to [float64]
How would one create a histogram of pandas timedelta data?
如何创建熊猫 timedelta 数据的直方图?
采纳答案by Jeff
Here are ways to convert timedeltas, docs are here
这是转换时间增量的方法,文档在这里
In [2]: pd.to_timedelta(np.arange(5),unit='d')+pd.to_timedelta(1,unit='s')
Out[2]:
0 0 days, 00:00:01
1 1 days, 00:00:01
2 2 days, 00:00:01
3 3 days, 00:00:01
4 4 days, 00:00:01
dtype: timedelta64[ns]
Convert to seconds (is an exact conversion)
转换为秒(是精确转换)
In [3]: (pd.to_timedelta(np.arange(5),unit='d')+pd.to_timedelta(1,unit='s')).astype('timedelta64[s]')
Out[3]:
0 1
1 86401
2 172801
3 259201
4 345601
dtype: float64
Convert using astype will round to that unit
使用 astype 转换将舍入到该单位
In [4]: (pd.to_timedelta(np.arange(5),unit='d')+pd.to_timedelta(1,unit='s')).astype('timedelta64[D]')
Out[4]:
0 0
1 1
2 2
3 3
4 4
dtype: float64
Division will give an exact repr
司将给出准确的代表
In [5]: (pd.to_timedelta(np.arange(5),unit='d')+pd.to_timedelta(1,unit='s')) / np.timedelta64(1,'D')
Out[5]:
0 0.000012
1 1.000012
2 2.000012
3 3.000012
4 4.000012
dtype: float64
回答by AlexG
You can plot nice histograms using the numpy timedelta data types.
您可以使用 numpy timedelta 数据类型绘制漂亮的直方图。
For example:
例如:
df['time_delta'].astype('timedelta64[s]').plot.hist()
will produce a histogram of the time deltas in seconds. To use minutes instead, you could do this:
将生成以秒为单位的时间增量直方图。要改用分钟,您可以这样做:
(df['time_delta'].astype('timedelta64[s]') / 60).plot.hist()
or use [m]
timedelta.
或使用时间[m]
增量。
df['time_delta'].astype('timedelta64[m]').plot.hist()
Here's list of other time delta types (from the docs) you might want, depending on the resolution you need:
以下是您可能需要的其他时间增量类型(来自docs)列表,具体取决于您需要的分辨率:
Code Meaning Time span (relative) Time span (absolute)
h hour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
s second +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
ms millisecond +/- 2.9e8 years [ 2.9e8 BC, 2.9e8 AD]
us microsecond +/- 2.9e5 years [290301 BC, 294241 AD]
ns nanosecond +/- 292 years [ 1678 AD, 2262 AD]
ps picosecond +/- 106 days [ 1969 AD, 1970 AD]
fs femtosecond +/- 2.6 hours [ 1969 AD, 1970 AD]
as attosecond +/- 9.2 seconds [ 1969 AD, 1970 AD]