pandas 将 DataFrame 列标题设置为 MultiIndex
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 
原文地址: http://stackoverflow.com/questions/18262962/
Warning: these are provided under cc-by-sa 4.0 license.  You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Setting DataFrame column headers to a MultiIndex
提问by mqk
How do I convert an existing dataframe with single-level columns to have hierarchical indexcolumns (MultiIndex)?
如何将具有单级列的现有数据框转换为具有分层索引列 (MultiIndex)?
Example dataframe:
示例数据框:
In [1]:
import pandas as pd
from pandas import Series, DataFrame
df = DataFrame(np.arange(6).reshape((2,3)),
               index=['A','B'],
               columns=['one','two','three'])
df
Out [1]:
   one  two  three
A    0    1      2
B    3    4      5
I'd have thought that reindex() would work, but I get NaN's:
我原以为 reindex() 会起作用,但我得到了 NaN:
In [2]:
df.reindex(columns=[['odd','even','odd'],df.columns])
Out [2]:
   odd  even    odd
   one   two  three
A  NaN   NaN    NaN
B  NaN   NaN    NaN
Same if I use DataFrame():
如果我使用 DataFrame() 也是一样:
In [3]:
DataFrame(df,columns=[['odd','even','odd'],df.columns])
Out [3]:
   odd  even    odd
   one   two  three
A  NaN   NaN    NaN
B  NaN   NaN    NaN
This last approach actually does work if I specify df.values:
如果我指定 df.values,最后一种方法实际上确实有效:
In [4]:
DataFrame(df.values,index=df.index,columns=[['odd','even','odd'],df.columns])
Out [4]:
   odd  even    odd
   one   two  three
A    0     1      2
B    3     4      5
What's the proper way to do this? Why does reindex() give NaN's?
这样做的正确方法是什么?为什么 reindex() 给出 NaN?
回答by Jeff
You were close, just set the columns directly to a new (equal sized) index-like (which if its a list-of-list will convert to a multi-index)
你很接近,只需将列直接设置为一个新的(相同大小的)索引(如果它的列表将转换为多索引)
In [8]: df
Out[8]: 
   one  two  three
A    0    1      2
B    3    4      5
In [10]: df.columns = [['odd','even','odd'],df.columns]
In [11]: df
Out[11]: 
   odd  even    odd
   one   two  three
A    0     1      2
B    3     4      5
Reindex will reorder / filter the existing index. The reason you get all nans is you are saying, hey find the existing columns that match this new index; none match, so that's what you get
Reindex 将重新排序/过滤现有索引。你得到所有 nans 的原因是你说,嘿,找到与这个新索引匹配的现有列;没有匹配,所以这就是你得到的

