在 Pandas DF 行中查找最小日期并创建新列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/18134794/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:04:30  来源:igfitidea点击:

Finding the min date in a Pandas DF row and create new Column

pythonpandas

提问by dartdog

I have a table with a number of dates (some dates will be NaN) and I need to find the oldest date so a row may have DATE_MODIFIED, WITHDRAWN_DATE, SOLD_DATE, STATUS_DATE etc..

我有一个包含多个日期的表(有些日期是 NaN),我需要找到最旧的日期,所以一行可能有 DATE_MODIFIED、WITHDRAWN_DATE、SOLD_DATE、STATUS_DATE 等。

So for each row there will be a date in one or more of the fields I want to find the oldest of those and make a new column in the dataframe.

因此,对于每一行,我想找到其中最旧的一个或多个字段中的日期,并在数据框中创建一个新列。

Something like this, if I just do one , eg DATE MODIFIED I get a result but when I add the second as below

像这样的事情,如果我只做一个,例如 DATE MODIFIED 我会得到一个结果但是当我添加第二个时,如下所示

table['END_DATE']=min([table['DATE_MODIFIED']],[table['SOLD_DATE']])

I get:

我得到:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

For that matter will this construct work to find the min date, assuming I create correct date columns initially?

就此而言,假设我最初创建正确的日期列,此构造是否可以找到最小日期?

回答by Viktor Kerkez

Just apply the minfunction along the axis=1.

只需min沿轴 = 1应用该函数。

In [1]: import pandas as pd 
In [2]: df = pd.read_csv('test.cvs', parse_dates=['d1', 'd2', 'd3'])
In [3]: df.ix[2, 'd1'] = None
In [4]: df.ix[1, 'd2'] = None
In [5]: df.ix[4, 'd3'] = None
In [6]: df
Out[6]:
                   d1                  d2                  d3
0 2013-02-07 00:00:00 2013-03-08 00:00:00 2013-05-21 00:00:00
1 2013-02-07 00:00:00                 NaT 2013-05-21 00:00:00
2                 NaT 2013-03-02 00:00:00 2013-05-21 00:00:00
3 2013-02-04 00:00:00 2013-03-08 00:00:00 2013-01-04 00:00:00
4 2013-02-01 00:00:00 2013-03-06 00:00:00                 NaT
In [7]: df.min(axis=1)
Out[7]:
0   2013-02-07 00:00:00
1   2013-02-07 00:00:00
2   2013-03-02 00:00:00
3   2013-01-04 00:00:00
4   2013-02-01 00:00:00
dtype: datetime64[ns]

回答by Felix Zumstein

If tableis your DataFrame, then use its minmethod on the relevant columns:

如果table是您的 DataFrame,则min在相关列上使用其方法:

table['END_DATE'] = table[['DATE_MODIFIED','SOLD_DATE']].min(axis=1)

回答by fccoelho

A slight variation over Felix Zumstein's

与 Felix Zumstein 的略有不同

table['END_DATE'] = table[['DATE_MODIFIED','SOLD_DATE']].min(axis=1).astype('datetime64[ns]')

The astype('datetime64[ns]')is necessary in the current version of pandas (july 2015) to avoid getting a float64representation of the dates.

astype('datetime64[ns]')在当前版本的Pandas(2015 年 7 月)中,这是必要的,以避免获得float64日期的表示。