Python 在 Pandas 数据框中查找唯一值,而不管行或列位置

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20084382/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 19:29:23  来源:igfitidea点击:

Find unique values in a Pandas dataframe, irrespective of row or column location

pythonpandasdataframe

提问by user1717931

I have a Pandas dataframe and I want to find all the unique values in that dataframe...irrespective of row/columns. If I have a 10 x 10 dataframe, and suppose they have 84 unique values, I need to find them - Not the count.

我有一个 Pandas 数据框,我想在该数据框中找到所有唯一值......无论行/列如何。如果我有一个 10 x 10 的数据框,并假设它们有 84 个唯一值,我需要找到它们 - 而不是计数。

I can create a set and add the values of each rows by iterating over the rows of the dataframe. But, I feel that it may be inefficient (cannot justify that). Is there an efficient way to find it? Is there a predefined function?

我可以创建一个集合并通过遍历数据帧的行来添加每行的值。但是,我觉得它可能效率低下(不能证明这一点)。有没有一种有效的方法可以找到它?有预定义的功能吗?

采纳答案by Jeff

In [1]: df = DataFrame(np.random.randint(0,10,size=100).reshape(10,10))

In [2]: df
Out[2]: 
   0  1  2  3  4  5  6  7  8  9
0  2  2  3  2  6  1  9  9  3  3
1  1  2  5  8  5  2  5  0  6  3
2  0  7  0  7  5  5  9  1  0  3
3  5  3  2  3  7  6  8  3  8  4
4  8  0  2  2  3  9  7  1  2  7
5  3  2  8  5  6  4  3  7  0  8
6  4  2  6  5  3  3  4  5  3  2
7  7  6  0  6  6  7  1  7  5  1
8  7  4  3  1  0  6  9  7  7  3
9  5  3  4  5  2  0  8  6  4  7

In [13]: Series(df.values.ravel()).unique()
Out[13]: array([9, 1, 4, 6, 0, 7, 5, 8, 3, 2])

Numpy unique sorts, so its faster to do it this way (and then sort if you need to)

Numpy 独特的排序,所以这样做会更快(如果需要,然后排序)

In [14]: df = DataFrame(np.random.randint(0,10,size=10000).reshape(100,100))

In [15]: %timeit Series(df.values.ravel()).unique()
10000 loops, best of 3: 137 ?s per loop

In [16]: %timeit np.unique(df.values.ravel())
1000 loops, best of 3: 270 ?s per loop

回答by user1506145

Or you can use:

或者你可以使用:

df.stack().unique()

df.stack().unique()

Then you don't need to worry if you have NaNvalues, as they are excluded when doing the stacking.

那么您不必担心是否有NaN值,因为在进行堆叠时它们被排除在外。