pandas 使用pandas读取JSON文件进行Python分析
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/22811791/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Using pandas to read JSON file for Python analysis
提问by user1745447
I'm running into some issues, trying to load a JSON file in my Python editor so that I can run some analysis on the data within.
我遇到了一些问题,试图在我的 Python 编辑器中加载一个 JSON 文件,以便我可以对其中的数据进行一些分析。
The JSON file is in the following folder: 'C:\Users\Admin\JSON files\file1.JSON'
JSON 文件位于以下文件夹中: 'C:\Users\Admin\JSON files\file1.JSON'
It contains the following tweet data (this is just one record, there are hundreds in there):
它包含以下推文数据(这只是一条记录,其中有数百条记录):
{
"created": "Fri Mar 13 18:09:33 GMT 2014",
"description": "Tweeting the latest Playstation news!",
"favourites_count": 4514,
"followers": 235,
"following": 1345,
"geo_lat": null,
"geo_long": null,
"hashtags": "",
"id": 2144411414,
"is_retweet": false,
"is_truncated": false,
"lang": "en",
"location": "",
"media_urls": "",
"mentions": "",
"name": "Playstation News",
"original_text": null,
"reply_status_id": 0,
"reply_user_id": 0,
"retweet_count": 4514,
"retweet_id": 0,
"score": 0.0,
"screen_name": "SevenPS4",
"source": "<a href=\"http://twitterfeed.com\" rel=\"nofollow\">twitterfeed</a>",
"text": "tweetinfohere",
"timezone": "Amsterdam",
"url": null,
"urls": "http://bit.ly/1lcbBW6",
"user_created": "2013-05-19",
"user_id": 13313,
"utc_offset": 3600
}
I am using the following code to try and test this data:
我正在使用以下代码来尝试测试此数据:
import json
import pandas as pa
z = pa.read_json('C:\Users\Admin\JSON files\file1.JSON')
d = pa.DataFrame.from_dict([{k:v} for k,v in z.iteritems() if k in ["retweet_count", "user_id", "is_retweet"]])
print d.retweet_count.sum()
When I run this, it successfully reads the JSON file then prints out a list of the retweet_count's like this:
当我运行它时,它成功读取了 JSON 文件,然后像这样打印出 retweet_count 的列表:
0, 4514
1, 300
2, 450
3, 139etc etc
0, 4514
1, 300
2, 450
3, 139等等等等
My questions: How do I actually sum up all of the retweet_count/user_id values rather than just listing them like shown above?
我的问题:我如何实际总结所有的 retweet_count/user_id 值,而不是像上面显示的那样只列出它们?
How do I then divide this sum by the number of entries to get an average?
然后我如何将这个总和除以条目数以获得平均值?
How can I choose a sample size of the JSON data rather than use it all? (I thought it was d.iloc[:10] but that doesn't work)
如何选择 JSON 数据的样本大小而不是全部使用?(我以为是 d.iloc[:10] 但这不起作用)
With the 'is_retweet' field in the JSON file, is it possible to make a count for the amount of false/trues that are given? IE within the JSON file, I want the number of tweets that were retweeted and the number that weren't.
使用 JSON 文件中的“is_retweet”字段,是否可以计算给出的假/真数量?IE 在 JSON 文件中,我想要被转发的推文数量和未被转发的数量。
Thanks in advance, yeah I'm pretty new to this..
在此先感谢,是的,我对此很陌生..
z.info()gives:
z.info()给出:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 506 entries, 0 to 505
Data columns (total 31 columns):
created 506 non-null object
description 506 non-null object
favourites_count 506 non-null int64
followers 506 non-null int64
following 506 non-null int64
geo_lat 10 non-null float64
geo_long 10 non-null float64
hashtags 506 non-null object
id 506 non-null int64
is_retweet 506 non-null bool
is_truncated 506 non-null bool
lang 506 non-null object
location 506 non-null object
media_urls 506 non-null object
mentions 506 non-null object
name 506 non-null object
original_text 172 non-null object
reply_status_id 506 non-null int64
reply_user_id 506 non-null int64
retweet_id 506 non-null int64
retweet_count 506 non_null int64
score 506 non-null int64
screen_name 506 non-null object
source 506 non-null object
status_count 506 non-null int64
text 506 non-null object
timezone 415 non-null object
url 273 non-null object
urls 506 non-null object
user_created 506 non-null object
user_id 506 non-null int64
utc_offset 506 non-null int64
dtypes: bool(2), float64(2), int64(11), object(16)
<class 'pandas.core.frame.DataFrame'>
Int64Index: 506 entries, 0 to 505
Data columns (total 31 columns):
created 506 non-null object
description 506 non-null object
favourites_count 506 non-null int64
followers 506 non-null int64
following 506 non-null int64
geo_lat 10 non-null float64
geo_long 10 non-null float64
hashtags 506 non-null object
id 506 non-null int64
is_retweet 506 non-null bool
is_truncated 506 non-null bool
lang 506 non-null object
location 506 non-null object
media_urls 506 non-null object
mentions 506 non-null object
name 506 non-null object
original_text 172 non-null object
reply_status_id 506 non-null int64
reply_user_id 506 non-null int64
retweet_id 506 non-null int64
retweet_count 506 non_null int64
score 506 non-null int64
screen_name 506 non-null object
source 506 non-null object
status_count 506 non-null int64
text 506 non-null object
timezone 415 non-null object
url 273 non-null object
urls 506 non-null object
user_created 506 non-null object
user_id 506 non-null int64
utc_offset 506 non-null int64
dtypes: bool(2), float64(2), int64(11), object(16)
How come it is showing retweet_count and user_id as objects when I run d.info()?
当我运行 d.info() 时,它为什么将 retweet_count 和 user_id 显示为对象?
回答by myacobucci
d.retweet_countis a list of dictionaries for your retweet_countscorrect?
d.retweet_count是您retweet_counts正确的字典列表吗?
So to get the sum:
所以要得到总和:
keys = d.retweet_count.keys()
sum = 0
for items in keys:
sum+=d.retweet_count[items]
To get the average:
要获得平均值:
avg = sum/len(keys)
Now to get a sample size just divide up keys:
现在要获得样本大小,只需将其分开keys:
sample_keys = keys[0:10]
to get the mean
得到平均值
for items in sample_keys:
sum+=d.retweet_count[items]
avg = sum/len(sample_keys)

