pandas python pandas将数据帧转换为具有多个值的字典

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20112760/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:22:25  来源:igfitidea点击:

python pandas convert dataframe to dictionary with multiple values

pythondictionarypandas

提问by user2872701

I have a dataframe with 2 columns Address and ID. I want to merge IDs with the same addresses in a dictionary

我有一个包含 2 列地址和 ID 的数据框。我想在字典中合并具有相同地址的 ID

import pandas as pd, numpy as np

df = pd.DataFrame({'Address' : ['12 A', '66 C', '10 B', '10 B', '12 A', '12 A'],
                'ID' : ['Aa', 'Bb', 'Cc', 'Dd', 'Ee', 'Ff']})
AS=df.set_index('Address')['ID'].to_dict()

print df

  Address  ID
0    12 A  Aa
1    66 C  Bb
2    10 B  Cc
3    10 B  Dd
4    12 A  Ee
5    12 A  Ff

print AS

{'66 C': 'Bb', '12 A': 'Ff', '10 B': 'Dd'}

What I want is for the duplicates to store multiple values like:

我想要的是重复存储多个值,如:

{'66 C': ['Bb'], '12 A': ['Aa','Ee','Ff'], '10 B': ['Cc','Dd']}

回答by DSM

I think you can use groupbyand a dictionary comprehension here:

我认为你可以groupby在这里使用字典理解:

>>> df
  Address  ID
0    12 A  Aa
1    66 C  Bb
2    10 B  Cc
3    10 B  Dd
4    12 A  Ee
5    12 A  Ff
>>> {k: list(v) for k,v in df.groupby("Address")["ID"]}
{'66 C': ['Bb'], '12 A': ['Aa', 'Ee', 'Ff'], '10 B': ['Cc', 'Dd']}

回答by lababidi

In response to the comment about multiple columns:

回应关于多列的评论:

>>> df
  Address  ID  Name
0    12 A  Aa  Alpha
1    66 C  Bb  Bravo
2    10 B  Cc  Charlie
3    10 B  Dd  Delta
4    12 A  Ee  Edgar
5    12 A  Ff  Frank
>>> {k: v.to_dict() for k,v in df.groupby("Address")}