pandas 如何根据现有列熊猫的多个条件创建新列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/45107555/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 04:00:28  来源:igfitidea点击:

How to create new column based on multiple conditions from existing column pandas

pythonpython-3.xpandaslist-comprehension

提问by e9e9s

So I have a df column of 9 digit IDs. There are no duplicates and each ID starts with a different number that ranges from 1-6 -- depending on the number each ID starts with I want to create a separate column with the "name" that the first number of the ID represents. (e.g. IDs that start with 1 represent Maine, IDs that start with 2 represent California... and so on)

所以我有一个 df 列的 9 位 ID。没有重复,并且每个 ID 都以不同的数字开头,范围从 1 到 6 - 根据每个 ID 开头的数字我想创建一个单独的列,其中包含 ID 的第一个数字代表的“名称”。(例如,以 1 开头的 ID 代表缅因州,以 2 开头的 ID 代表加利福尼亚州......等等)

This works if it was only 2 conditions:

如果只有 2 个条件,则此方法有效:

df['id_label'] = ['name_1' if name.startswith('1') else 'everything_else' for name in df['col_1']]

I couldn't figure out how to create a multi line line comprehension for what I need so I thought this would work, but it only creates the id_labelcolumn from the last iteration of the loop (i.e. the id_labelcolumn will only contain 'name_5):

我无法弄清楚如何为我需要的内容创建多行理解,所以我认为这会起作用,但它只id_label从循环的最后一次迭代创建列(即该id_label列将只包含'name_5):

for col in df['col_1']:
    if col.startswith('1'):
        df['id_label'] = 'name_1'
    if col.startswith('2'):
        df['id_label'] = 'name_2'
    if col.startswith('3'):
       df['id_label'] = 'name_3'
    if col.startswith('4'):
        df['id_label'] = 'name_4'
    if col.startswith('5'):
        df['id_label'] = 'name_5'
    if col.startswith('6'):
        df['id_label'] = 'name_5'

My question is how can I create a new column from an old column based on multiple conditional statements?

我的问题是如何根据多个条件语句从旧列创建新列?

回答by jezrael

I think you can convert column to strby astype, select first value and last mapby dict:

我认为您可以将列转换为strby astype,选择第一个值和最后一个mapby dict

df = pd.DataFrame({'col_1':[133,255,36,477,55,63]})
print (df)

d = {'1':'Maine', '2': 'California', '3':'a', '4':'f', '5':'r', '6':'r'}
df['id_label'] = df['col_1'].astype(str).str[0].map(d)
print (df)
   col_1    id_label
0    133       Maine
1    255  California
2     36           a
3    477           f
4     55           r
5     63           r

回答by Bharath

You can use applyin case you have lot of if elses

apply如果你有很多 if elses,你可以使用

def ifef(col):
    col = str(col)
    if col.startswith('1'):
        return  'name_1'
    if col.startswith('2'):
        return 'name_2'
    if col.startswith('3'):
        return 'name_3'
    if col.startswith('4'):
        return'name_4'
    if col.startswith('5'):
        return 'name_5'
    if col.startswith('6'):
        return 'name_5'
df = pd.DataFrame({'col_1':[133,255,36,477,55,63]})
df['id_label'] = df['col_1'].apply(ifef)
   col_1 id_label
0    133   name_1
1    255   name_2
2     36   name_3
3    477   name_4
4     55   name_5
5     63   name_5

In case if you have a dictionaary you can use

如果你有字典,你可以使用

df = pd.DataFrame({'col_1':[133,255,36,477,55,63]})
d = {'1':'M', '2': 'C', '3':'a', '4':'f', '5':'r', '6':'s'}
def ifef(col):
    col = str(col)
    return d[col[0]]

df['id_label'] = df['col_1'].apply(ifef)
print(df)
  col_1 id_label
0    133        M
1    255        C
2     36        a
3    477        f
4     55        r
5     63        s

回答by Preetham

Can you check this and let me know whether its suitable for your question.

你能检查一下吗,让我知道它是否适合你的问题。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.DataFrame({'col_1':[133,255,36,477,55,63]})

df['col_2'] = df['col_1'].astype(str).str[0]

condlist = [df['col_2'] == "1",
            df['col_2'] == "2",
            df['col_2'] == "3",
            df['col_2'] == "4",
            ((df['col_2'] == "5") | (df['col_2'] == "6")),
            ]
choicelist = ['Maine','California','India', 'Frnace','5/6']

df['id_label'] = np.select(condlist, choicelist)

print(df)

#### Output ####

   col_1 col_2    id_label
0    133     1       Maine
1    255     2  California
2     36     3       India
3    477     4      Frnace
4     55     5         5/6
5     63     6         5/6

PS: Thanks for @ALollzwho introduced me to np.select

PS:感谢@ALollz向我介绍 np.select