Pandas:使用 read_csv 解析不同列中的日期
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45090567/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas: Parsing dates in different columns with read_csv
提问by Arda Arslan
I have an ascii file where the dates are formatted as follows:
我有一个 ascii 文件,其中的日期格式如下:
Jan 20 2015 00:00:00.000
Jan 20 2015 00:10:00.000
Jan 20 2015 00:20:00.000
Jan 20 2015 00:30:00.000
Jan 20 2015 00:40:00.000
When loading the file into pandas, each column above gets its own column in a pandas dataframe. I've tried the variations of the following:
将文件加载到 Pandas 时,上面的每一列在 Pandas 数据框中都有自己的列。我尝试了以下变体:
from pandas import read_csv
from datetime import datetime
df = read_csv('file.txt', header=None, delim_whitespace=True,
parse_dates={'datetime': [0, 1, 2, 3]},
date_parser=lambda x: datetime.strptime(x, '%b %d %Y %H %M %S'))
I get a couple errors:
我收到几个错误:
TypeError: <lambda>() takes 1 positional argument but 4 were given
ValueError: time data 'Jun 29 2017 00:35:00.000' does not match format '%b %d %Y %H %M %S'
I'm confused because:
我很困惑,因为:
- I'm passing a dict to
parse_dates
to parse the different columns as a single date. - I'm using:
%b
- abbreviated month name,%d
- day of the month,%Y
year with century,%H
24-hour,%M
- minute, and%S
- second
- 我正在传递一个 dict 来
parse_dates
将不同的列解析为单个日期。 - 我正在使用:
%b
- 缩写的月份名称,%d
- 月份中的日期,%Y
带有世纪的年份,%H
24 小时,%M
- 分和%S
- 秒
Anyone see what I'm doing incorrectly?
有人看到我做错了什么吗?
Edit:
编辑:
I've tried date_parser=lambda x: datetime.strptime(x, '%b %d %Y %H:%M:%S')
which returns ValueError: unconverted data remains: .000
我试过date_parser=lambda x: datetime.strptime(x, '%b %d %Y %H:%M:%S')
哪个返回ValueError: unconverted data remains: .000
Edit 2:
编辑2:
I tried what @MaxU suggested in his update, but it was problematic because my original data is formatted like the following:
我尝试了@MaxU 在他的更新中建议的内容,但有问题,因为我的原始数据格式如下:
Jan 1 2017 00:00:00.000 123 456 789 111 222 333
I'm only interested in the first 7 columns so I import my file with the following:
我只对前 7 列感兴趣,所以我使用以下内容导入我的文件:
df = read_csv(fn, header=None, delim_whitespace=True, usecols=[0, 1, 2, 3, 4, 5, 6])
Then to create a column with datetime information from the first 4 columns I try:
然后从前 4 列创建一个包含日期时间信息的列,我尝试:
df['datetime'] = to_datetime(df.ix[:, :3], format='%b %d %Y %H:%M:%S.%f')
However this doesn't work because to_datetime
expects "integer, float, string, datetime, list, tuple, 1-d array, Series" as the first argument and df.ix[:, :3]
returns a dataframe with the following format:
但是这不起作用,因为to_datetime
需要“整数、浮点数、字符串、日期时间、列表、元组、一维数组、系列”作为第一个参数并df.ix[:, :3]
返回具有以下格式的数据帧:
0 1 2 3
0 Jan 1 2017 00:00:00.000
How do I feed in every row of the first four columns to to_datetime
such that I get one column of datetimes
?
如何在前四列的每一行中输入to_datetime
,以便获得一列datetimes
?
Edit 3:
编辑3:
I think I solved my second problem.
I just use to following command and do everything when I read my file in (I was basically just missing %f
to parse past seconds):
我想我解决了我的第二个问题。我只是习惯于遵循命令并在读取文件时执行所有操作(我基本上只是错过%f
了解析过去几秒钟的时间):
df = read_csv(fileName, header=None, delim_whitespace=True,
parse_dates={'datetime': [0, 1, 2, 3]},
date_parser=lambda x: datetime.strptime(x, '%b %d %Y %H:%M:%S.%f'),
usecols=[0, 1, 2, 3, 4, 5, 6])
The whole reason I wanted to parse manually instead of letting pandas handle it like @MaxU suggested was to see if manually feeding in instructions would be faster - and it is! From my tests the snippet above runs approximately 5-6 times faster than letting pandas infer parsing for you.
我想手动解析而不是让Pandas像@MaxU 建议的那样处理它的全部原因是看看手动输入指令是否会更快 - 确实如此!从我的测试来看,上面的代码片段比让 Pandas 为您推断解析的运行速度大约快 5-6 倍。
采纳答案by MaxU
Pandas (tested with version 0.20.1) is smart enough to do it for you:
Pandas(使用 0.20.1 版测试)足够聪明,可以为您完成:
In [4]: pd.read_csv(fn, sep='\s+', parse_dates={'datetime': [0, 1, 2, 3]})
Out[4]:
datetime
0 2015-01-20 00:10:00
1 2015-01-20 00:20:00
2 2015-01-20 00:30:00
3 2015-01-20 00:40:00
UPDATE:if all entries have the same format you can try to do it this way:
更新:如果所有条目都具有相同的格式,您可以尝试这样做:
df = pd.read_csv(fn, sep='~', names=['datetime'])
df['datetime'] = pd.to_datetime(df['datetime'], format='%b %d %Y %H:%M:%S.%f')
回答by Diego Aguado
Have a go to this simpler approach:
试试这个更简单的方法:
df = pandas.read_csv('file.txt')
df.columns = ['date']
df
should be a dataframe with a single column. After that try casting that column to datetime
df
应该是具有单列的数据框。之后尝试将该列转换为日期时间
df['date'] = pd.to_datetime(df['date'])