NLTK 命名实体识别到 Python 列表
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/31836058/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
NLTK Named Entity recognition to a Python list
提问by Zlo
I used NLTK's ne_chunk
to extract named entities from a text:
我使用 NLTKne_chunk
从文本中提取命名实体:
my_sent = "WASHINGTON -- In the wake of a string of abuses by New York police officers in the 1990s, Loretta E. Lynch, the top federal prosecutor in Brooklyn, spoke forcefully about the pain of a broken trust that African-Americans felt and said the responsibility for repairing generations of miscommunication and mistrust fell to law enforcement."
nltk.ne_chunk(my_sent, binary=True)
But I can't figure out how to save these entities to a list? E.g. –
但我不知道如何将这些实体保存到列表中?例如——
print Entity_list
('WASHINGTON', 'New York', 'Loretta', 'Brooklyn', 'African')
Thanks.
谢谢。
采纳答案by alvas
nltk.ne_chunk
returns a nested nltk.tree.Tree
object so you would have to traverse the Tree
object to get to the NEs.
nltk.ne_chunk
返回一个嵌套nltk.tree.Tree
对象,因此您必须遍历该Tree
对象才能到达 NE。
Take a look at Named Entity Recognition with Regular Expression: NLTK
>>> from nltk import ne_chunk, pos_tag, word_tokenize
>>> from nltk.tree import Tree
>>>
>>> def get_continuous_chunks(text):
... chunked = ne_chunk(pos_tag(word_tokenize(text)))
... continuous_chunk = []
... current_chunk = []
... for i in chunked:
... if type(i) == Tree:
... current_chunk.append(" ".join([token for token, pos in i.leaves()]))
... elif current_chunk:
... named_entity = " ".join(current_chunk)
... if named_entity not in continuous_chunk:
... continuous_chunk.append(named_entity)
... current_chunk = []
... else:
... continue
... return continuous_chunk
...
>>> my_sent = "WASHINGTON -- In the wake of a string of abuses by New York police officers in the 1990s, Loretta E. Lynch, the top federal prosecutor in Brooklyn, spoke forcefully about the pain of a broken trust that African-Americans felt and said the responsibility for repairing generations of miscommunication and mistrust fell to law enforcement."
>>> get_continuous_chunks(my_sent)
['WASHINGTON', 'New York', 'Loretta E. Lynch', 'Brooklyn']
回答by b3000
As you get a tree
as a return value, I guess you want to pick those subtrees that are labeled with NE
当你得到 atree
作为返回值时,我猜你想选择那些标有NE
Here is a simple example to gather all those in a list:
这是一个简单的示例,用于收集列表中的所有内容:
import nltk
my_sent = "WASHINGTON -- In the wake of a string of abuses by New York police officers in the 1990s, Loretta E. Lynch, the top federal prosecutor in Brooklyn, spoke forcefully about the pain of a broken trust that African-Americans felt and said the responsibility for repairing generations of miscommunication and mistrust fell to law enforcement."
parse_tree = nltk.ne_chunk(nltk.tag.pos_tag(my_sent.split()), binary=True) # POS tagging before chunking!
named_entities = []
for t in parse_tree.subtrees():
if t.label() == 'NE':
named_entities.append(t)
# named_entities.append(list(t)) # if you want to save a list of tagged words instead of a tree
print named_entities
This gives:
这给出:
[Tree('NE', [('WASHINGTON', 'NNP')]), Tree('NE', [('New', 'NNP'), ('York', 'NNP')])]
or as a list of lists:
或作为列表列表:
[[('WASHINGTON', 'NNP')], [('New', 'NNP'), ('York', 'NNP')]]
Also see: How to navigate a nltk.tree.Tree?
另请参阅:如何导航 nltk.tree.Tree?
回答by alexis
A Tree
is a list. Chunks are subtrees, non-chunked words are regular strings. So let's go down the list, extract the words from each chunk, and join them.
ATree
是一个列表。块是子树,非块词是常规字符串。因此,让我们沿着列表向下,从每个块中提取单词,然后加入它们。
>>> chunked = nltk.ne_chunk(my_sent)
>>>
>>> [ " ".join(w for w, t in elt) for elt in chunked if isinstance(elt, nltk.Tree) ]
['WASHINGTON', 'New York', 'Loretta E. Lynch', 'Brooklyn']
回答by imanzabet
You can also extract the label
of each Name Entity in the text using this code:
您还可以label
使用以下代码提取文本中每个名称实体的 :
import nltk
for sent in nltk.sent_tokenize(sentence):
for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))):
if hasattr(chunk, 'label'):
print(chunk.label(), ' '.join(c[0] for c in chunk))
Output:
输出:
GPE WASHINGTON
GPE New York
PERSON Loretta E. Lynch
GPE Brooklyn
You can see Washington
, New York
and Brooklyn
are GPE
means geo-political entities
你可以看到Washington
,New York
并Brooklyn
有GPE
手段地缘实体
and Loretta E. Lynch
is a PERSON
并且Loretta E. Lynch
是一个PERSON
回答by elwhite
use tree2conlltags from nltk.chunk. Also ne_chunk needs pos tagging which tags word tokens (thus needs word_tokenize).
使用 nltk.chunk 中的 tree2conlltags。ne_chunk 还需要 pos 标记来标记单词标记(因此需要 word_tokenize)。
from nltk import word_tokenize, pos_tag, ne_chunk
from nltk.chunk import tree2conlltags
sentence = "Mark and John are working at Google."
print(tree2conlltags(ne_chunk(pos_tag(word_tokenize(sentence))
"""[('Mark', 'NNP', 'B-PERSON'),
('and', 'CC', 'O'), ('John', 'NNP', 'B-PERSON'),
('are', 'VBP', 'O'), ('working', 'VBG', 'O'),
('at', 'IN', 'O'), ('Google', 'NNP', 'B-ORGANIZATION'),
('.', '.', 'O')] """
This will give you a list of tuples: [(token, pos_tag, name_entity_tag)] If this list is not exactly what you want, it is certainly easier to parse the list you want out of this list then an nltk tree.
这会给你一个元组列表: [(token, pos_tag, name_entity_tag)] 如果这个列表不是你想要的,那么从这个列表中解析你想要的列表肯定更容易,然后是 nltk 树。
Code and details from this link; check it out for more information
此链接中的代码和详细信息;查看更多信息
You can also continue by only extracting the words, with the following function:
您也可以通过仅提取单词来继续,使用以下功能:
def wordextractor(tuple1):
#bring the tuple back to lists to work with it
words, tags, pos = zip(*tuple1)
words = list(words)
pos = list(pos)
c = list()
i=0
while i<= len(tuple1)-1:
#get words with have pos B-PERSON or I-PERSON
if pos[i] == 'B-PERSON':
c = c+[words[i]]
elif pos[i] == 'I-PERSON':
c = c+[words[i]]
i=i+1
return c
print(wordextractor(tree2conlltags(nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sentence))))
EditAdded output docstring **Edit* Added Output only for B-Person
编辑添加输出文档字符串 **编辑* 仅为 B-Person 添加输出
回答by Nic Scozzaro
You may also consider using Spacy:
您也可以考虑使用 Spacy:
import spacy
nlp = spacy.load('en')
doc = nlp('WASHINGTON -- In the wake of a string of abuses by New York police officers in the 1990s, Loretta E. Lynch, the top federal prosecutor in Brooklyn, spoke forcefully about the pain of a broken trust that African-Americans felt and said the responsibility for repairing generations of miscommunication and mistrust fell to law enforcement.')
print([ent for ent in doc.ents])
>>> [WASHINGTON, New York, the 1990s, Loretta E. Lynch, Brooklyn, African-Americans]
回答by Akshay
nltk.ne_chunk returns a nested nltk.tree.Tree object so you would have to traverse the Tree object to get to the NEs. You can use list comprehension to do the same.
nltk.ne_chunk 返回一个嵌套的 nltk.tree.Tree 对象,因此您必须遍历 Tree 对象才能到达 NE。您可以使用列表理解来做同样的事情。
import nltk
my_sent = "WASHINGTON -- In the wake of a string of abuses by New York police officers in the 1990s, Loretta E. Lynch, the top federal prosecutor in Brooklyn, spoke forcefully about the pain of a broken trust that African-Americans felt and said the responsibility for repairing generations of miscommunication and mistrust fell to law enforcement."
word = nltk.word_tokenize(my_sent)
pos_tag = nltk.pos_tag(word)
chunk = nltk.ne_chunk(pos_tag)
NE = [ " ".join(w for w, t in ele) for ele in chunk if isinstance(ele, nltk.Tree)]
print (NE)