pandas python pandas重新采样计数和总和

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/42938535/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:15:21  来源:igfitidea点击:

python pandas resample count and sum

pythonpandasdatetimeindexing

提问by jeangelj

I have data by date and want to create a new dataframe by week with sum of sales and count of categories.

我有按日期计算的数据,并希望按周创建一个新的数据框,其中包含销售额和类别数的总和。

#standard packages
import numpy as np
import pandas as pd

#visualization
%matplotlib inline
import matplotlib.pylab as plt

#create weekly datetime index
edf = pd.read_csv('C:\Users\j~\raw.csv', parse_dates=[6])
edf2 = edf[['DATESENT','Sales','Category']].copy()
edf2

#output

DATESENT    |  SALES  | CATEGORY
2014-01-04      100        A
2014-01-05      150        B
2014-01-07      150        C
2014-01-10      175        D

#create datetime index of week
edf2['DATESENT']=pd.to_datetime(edf2['DATESENT'],format='%m/%d/%Y')
edf2 = edf2.set_index(pd.DatetimeIndex(edf2['DATESENT']))
edf2.resample('w').sum()
edf2

#output

            SALES CATEGORY 
DATESENT     
2014-01-05  250      AB
2014-01-12  325      CD

But I am looking for

但我正在寻找

           SALES CATEGORY 
DATESENT     
2014-01-05  250      2
2014-01-12  325      2

This didn't work ...

这没有用...

edf2 = e2.resample('W').agg("Category":len,"Sales":np.sum)

Thank you

谢谢

回答by Scott Boston

Agg takes a dictionary as arguments in various formats.

Agg 将字典作为各种格式的参数。

edf2 = e2.resample('W').agg({"Category":'size',"Sales":'sum'})

回答by piRSquared

using pd.TimeGrouper+ agg

使用pd.TimeGrouper+agg

f = dict(SALES='sum', CATEGORY='count')
g = pd.TimeGrouper('W')
df.set_index('DATESENT').groupby(g).agg(f)

            CATEGORY  SALES
DATESENT                   
2014-01-05         2    250
2014-01-12         2    325