Python Pandas 从日期创建日期时间索引
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42932632/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python Pandas create Date Time index from date
提问by jeangelj
I have the following python pandas dataframe df:
我有以下 python Pandas数据帧 df:
DATES Sales
0 1/6/2013 5676
1 1/8/2014 45746
2 1/10/2015 42658
3 1/14/2015 890790
4 1/16/2016 5764
5 1/20/2014 7898
I need to change DATES to a Date Time Index, so that i can resample it.
我需要将日期更改为日期时间索引,以便我可以对其进行重新采样。
But when I do this
但是当我这样做时
pd.to_datetime(df,infer_datetime_format=True)
I get the following error: ValueError: to assemble mappings requires at least that [year, month, day] be specified: [day,month,year] is missing
我收到以下错误:ValueError:组装映射需要至少指定[年,月,日]:[日,月,年]丢失
回答by philshem
You should explicitly define the format
您应该明确定义格式
pd.to_datetime(df['DATES'],format='%m/%d/%Y')
and not let Pandas guess
不要让Pandas猜
To set a datetime as an index
将日期时间设置为索引
df = df.set_index(pd.DatetimeIndex(df['DATES']))
Works for non-padded month and day:
适用于非填充的月份和日期:
import pandas as pd
d = {'1/6/2013' : 5676}
df = pd.DataFrame(d.items(), columns=['DATES', 'Sales'])
df['DATES'] = pd.to_datetime(df['DATES'],format='%m/%d/%Y')
0 2013-01-06
0 2013-01-06