pandas 在熊猫数据框中以相同字符串开头的列的总和值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/35746847/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
sum values of columns starting with the same string in pandas dataframe
提问by Amanda
I have a dataframe with about 100 columns that looks like this:
我有一个包含大约 100 列的数据框,如下所示:
Id Economics-1 English-107 English-2 History-3 Economics-zz Economics-2 \
0 56 1 1 0 1 0 0
1 11 0 0 0 0 1 0
2 6 0 0 1 0 0 1
3 43 0 0 0 1 0 1
4 14 0 1 0 0 1 0
Histo Economics-51 Literature-re Literatureu4
0 1 0 1 0
1 0 0 0 1
2 0 0 0 0
3 0 1 1 0
4 1 0 0 0
My goal is to leave only global categories -- English, History, Literature -- and write the sum of the value of their components, respectively, in this dataframe. For instance, "English" would be the sum of "English-107" and "English-2":
我的目标是只留下全局类别——英语、历史、文学——并在这个数据框中分别写出它们组成部分的价值总和。例如,“English”将是“English-107”和“English-2”的总和:
Id Economics English History Literature
0 56 1 1 2 1
1 11 1 0 0 1
2 6 0 1 1 0
3 43 2 0 1 1
4 14 0 1 1 0
For this purpose, I have tried two methods. First method:
为此,我尝试了两种方法。第一种方法:
df = pd.read_csv(file_path, sep='\t')
df['History'] = df.loc[df[df.columns[pd.Series(df.columns).str.startswith('History')]].sum(axes=1)]
Second method:
第二种方法:
df = pd.read_csv(file_path, sep='\t')
filter_col = [col for col in list(df) if col.startswith('History')]
df['History'] = 0 # initialize value, otherwise throws KeyError
for c in df[filter_col]:
df['History'] = df[filter_col].sum(axes=1)
print df['History', df[filter_col]]
However, both gives the error:
但是,两者都给出了错误:
TypeError: 'DataFrame' objects are mutable, thus they cannot be hashed
TypeError: 'DataFrame' objects are mutable, thus they cannot be hashed
My question is either: how can I debug this error or is there another solution for my problem. Notice that I have a rather large dataframe with about 100 columns and 400000 rows, so I'm looking for an optimized solution, like using loc
in pandas.
我的问题是:如何调试此错误,或者是否有其他解决方案可以解决我的问题。请注意,我有一个相当大的数据框,大约有 100 列和 400000 行,所以我正在寻找一个优化的解决方案,比如loc
在 Pandas 中使用 。
回答by Ami Tavory
I'd suggest that you do something different, which is to perform a transpose, groupby the prefix of the rows (your original columns), sum, and transpose again.
我建议您做一些不同的事情,即执行转置,按行(您的原始列)的前缀分组,求和,然后再次转置。
Consider the following:
考虑以下:
df = pd.DataFrame({
'a_a': [1, 2, 3, 4],
'a_b': [2, 3, 4, 5],
'b_a': [1, 2, 3, 4],
'b_b': [2, 3, 4, 5],
})
Now
现在
[s.split('_')[0] for s in df.T.index.values]
is the prefix of the columns. So
是列的前缀。所以
>>> df.T.groupby([s.split('_')[0] for s in df.T.index.values]).sum().T
a b
0 3 3
1 5 5
2 7 7
3 9 9
does what you want.
做你想做的。
In your case, make sure to split using the '-'
character.
在您的情况下,请确保使用'-'
字符进行拆分。
回答by MaxU
Using brilliant DSM's idea:
使用 DSM 的绝妙创意:
from __future__ import print_function
import pandas as pd
categories = set(['Economics', 'English', 'Histo', 'Literature'])
def correct_categories(cols):
return [cat for col in cols for cat in categories if col.startswith(cat)]
df = pd.read_csv('data.csv', sep=r'\s+', index_col='Id')
#print(df)
print(df.groupby(correct_categories(df.columns),axis=1).sum())
Output:
输出:
Economics English Histo Literature
Id
56 1 1 2 1
11 1 0 0 1
6 1 1 0 0
43 2 0 1 1
14 1 1 1 0
Here is another version, which takes care of "Histo/History" problematic..
这是另一个版本,它处理“历史/历史”问题。
from __future__ import print_function
import pandas as pd
#categories = set(['Economics', 'English', 'Histo', 'Literature'])
#
# mapping: common starting pattern: desired name
#
categories = {
'Histo': 'History',
'Economics': 'Economics',
'English': 'English',
'Literature': 'Literature'
}
def correct_categories(cols):
return [categories[cat] for col in cols for cat in categories.keys() if col.startswith(cat)]
df = pd.read_csv('data.csv', sep=r'\s+', index_col='Id')
#print(df.columns, len(df.columns))
#print(correct_categories(df.columns), len(correct_categories(df.columns)))
#print(df.groupby(pd.Index(correct_categories(df.columns)),axis=1).sum())
rslt = df.groupby(correct_categories(df.columns),axis=1).sum()
print(rslt)
print('History\n', rslt['History'])
Output:
输出:
Economics English History Literature
Id
56 1 1 2 1
11 1 0 0 1
6 1 1 0 0
43 2 0 1 1
14 1 1 1 0
History
Id
56 2
11 0
6 0
43 1
14 1
Name: History, dtype: int64
PS You may want to add missing categories to categories
map/dictionary
PS 您可能想将缺少的类别添加到categories
地图/字典