pandas 在熊猫数据框中的任何列中删除带有“问号”值的行
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/35682719/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Drop rows with a 'question mark' value in any column in a pandas dataframe
提问by Anonymous
I want to remove all rows (or take all rows without) a question mark symbol in any column. I also want to change the elements to floattype.
我想删除任何列中的所有行(或删除所有行)一个问号符号。我也想将元素更改为浮动类型。
Input:
输入:
X Y Z
0 1 ?
1 2 3
? ? 4
4 4 4
? 2 5
Output:
输出:
X Y Z
1 2 3
4 4 4
Preferably using pandas dataframe operations.
最好使用Pandas数据框操作。
回答by jezrael
You can try first find string ?
in columns, create boolean mask and last filter rows - use boolean indexing. If you need convert columns to float
, use astype
:
您可以尝试首先?
在列中查找字符串,创建布尔掩码并最后过滤行 - 使用布尔索引。如果您需要将列转换为float
,请使用astype
:
print ~((df['X'] == '?' ) (df['Y'] == '?' ) | (df['Z'] == '?' ))
0 False
1 True
2 False
3 True
4 False
dtype: bool
df1 = df[~((df['X'] == '?' ) | (df['Y'] == '?' ) | (df['Z'] == '?' ))].astype(float)
print df1
X Y Z
1 1 2 3
3 4 4 4
print df1.dtypes
X float64
Y float64
Z float64
dtype: object
Or you can try:
或者你可以试试:
df['X'] = pd.to_numeric(df['X'], errors='coerce')
df['Y'] = pd.to_numeric(df['Y'], errors='coerce')
df['Z'] = pd.to_numeric(df['Z'], errors='coerce')
print df
X Y Z
0 0 1 NaN
1 1 2 3
2 NaN NaN 4
3 4 4 4
4 NaN 2 5
print ((df['X'].notnull() ) & (df['Y'].notnull() ) & (df['Z'].notnull() ))
0 False
1 True
2 False
3 True
4 False
dtype: bool
print df[ ((df['X'].notnull() ) & (df['Y'].notnull() ) & (df['Z'].notnull() )) ].astype(float)
X Y Z
1 1 2 3
3 4 4 4
Better is use:
更好的是使用:
df = df[(df != '?').all(axis=1)]
Or:
或者:
df = df[~(df == '?').any(axis=1)]
回答by Naidu Jithendra
You can try replacing ?
with null values
您可以尝试用?
空值替换
import numpy as np
data = df.replace("?", "np.Nan")
if you want to replace particular column try this:
如果要替换特定列,请尝试以下操作:
data = df["column name"].replace("?", "np.Nan")