Python SKLearn: TypeError: __init__() 得到了一个意外的关键字参数 n_splits
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45062395/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
SKLearn: TypeError: __init__() got an unexpected keyword argument n_splits
提问by bclayman
I'm trying to use SKLearn (version 0.18.1) as follows:
我正在尝试使用 SKLearn(版本 0.18.1),如下所示:
from sklearn.model_selection import KFold
kfold = KFold(n_splits=5, random_state=100)
But I get this strange error:
但是我收到了这个奇怪的错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-17-b8dd4f5596be> in <module>()
----> 1 kfold = KFold(k=5, random_state=100)
2 results = cross_val_score(estimator, X, Y, cv=kfold)
3 print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))
TypeError: __init__() got an unexpected keyword argument 'k'
I've consulted the docs here:
我在这里查阅了文档:
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
and n_splits
does look like a parameter I should be able to pass...
并且n_splits
确实看起来像一个我应该能够传递的参数......
Any idea what's going on here / how to fix?
知道这里发生了什么/如何解决吗?
Thanks!
谢谢!
回答by rriccilopes
回答by seralouk
Open your terminal (cmd) and try these before you try to import the sklearn.
在尝试导入 sklearn 之前,打开您的终端 (cmd) 并尝试这些。
pip install -U scikit-learn
or if you have anaconda installed
或者如果您安装了 anaconda
conda install scikit-learn
or
或者
conda update conda
conda update scikit-learn
Also make sure your have numpy and scipy:
还要确保你有 numpy 和 scipy:
pip install numpy
pip install scipy
Restart the python shell after installing scipy !
安装 scipy 后重启 python shell!
回答by Amaan Gigani
Use capital X in the brackets. It worked for me.
在括号中使用大写 X。它对我有用。
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = x_train, y = y_train, cv = 10)