Pandas - 按 id 分组并使用阈值删除重复项
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43713731/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas - group by id and drop duplicate with threshold
提问by Mansumen
I have the following data:
我有以下数据:
userid itemid
1 1
1 1
1 3
1 4
2 1
2 2
2 3
I want to drop userIDs who has viewed the same itemID more than or equal to twice. For example, userid=1 has viewed itemid=1 twice, and thus I want to drop the entire record of userid=1. However, since userid=2 hasn't viewed the same item twice, I will leave userid=2 as it is.
我想删除查看相同 itemID 两次以上的用户 ID。例如,userid=1 已经查看了 itemid=1 两次,因此我想删除 userid=1 的整个记录。但是,由于 userid=2 没有两次查看同一个项目,我将保留 userid=2 原样。
So I want my data to be like the following:
所以我希望我的数据如下所示:
userid itemid
2 1
2 2
2 3
Can someone help me?
有人能帮我吗?
import pandas as pd
df = pd.DataFrame({'userid':[1,1,1,1, 2,2,2],
'itemid':[1,1,3,4, 1,2,3] })
回答by root
You can use duplicated
to determine the row level duplicates, then perform a groupby
on 'userid' to determine 'userid' level duplicates, then drop accordingly.
您可以使用duplicated
来确定行级重复项,然后groupby
对“userid”执行 a以确定“userid”级重复项,然后相应地删除。
To drop without a threshold:
无阈值下降:
df = df[~df.duplicated(['userid', 'itemid']).groupby(df['userid']).transform('any')]
To drop with a threshold, use keep=False
in duplicated
, and sum over the Boolean column and compare against your threshold. For example, with a threshold of 3:
要删除阈值,请使用keep=False
in duplicated
,并对布尔列求和并与您的阈值进行比较。例如,阈值为 3:
df = df[~df.duplicated(['userid', 'itemid'], keep=False).groupby(df['userid']).transform('sum').ge(3)]
The resulting output for no threshold:
没有阈值的结果输出:
userid itemid
4 2 1
5 2 2
6 2 3
回答by piRSquared
filter
filter
Was made for this. You can pass a function that returns a boolean that determines if the group passed the filter or not.
是为此而生的。您可以传递一个函数,该函数返回一个布尔值,以确定该组是否通过了过滤器。
filter
and value_counts
Most generalizable and intuitive
filter
和value_counts
最通用和最直观的
df.groupby('userid').filter(lambda x: x.itemid.value_counts().max() < 2)
filter
and is_unique
special case when looking for n < 2
filter
和is_unique
寻找时的特殊情况n < 2
df.groupby('userid').filter(lambda x: x.itemid.is_unique)
userid itemid
4 2 1
5 2 2
6 2 3
回答by DYZ
Group the dataframe by users and items:
按用户和项目对数据框进行分组:
views = df.groupby(['userid','itemid'])['itemid'].count()
#userid itemid
#1 1 2 <=== The offending row
# 3 1
# 4 1
#2 1 1
# 2 1
# 3 1
#Name: dummy, dtype: int64
Find out who saw any item only once:
找出谁只看过一次任何项目:
THRESHOLD = 2
viewed = ~(views.unstack() >= THRESHOLD).any(axis=1)
#userid
#1 False
#2 True
#dtype: bool
Combine the results and keep the 'good' rows:
合并结果并保留“好”行:
combined = df.merge(pd.DataFrame(viewed).reset_index())
combined[combined[0]][['userid','itemid']]
# userid itemid
#4 2 1
#5 2 2
#6 2 3
回答by Allen
# group userid and itemid and get a count
df2 = df.groupby(by=['userid','itemid']).apply(lambda x: len(x)).reset_index()
#Extract rows where the max userid-itemid count is less than 2.
df2 = df2[~df2.userid.isin(df2[df2.ix[:,-1]>1]['userid'])][df.columns]
print(df2)
itemid userid
3 1 2
4 2 2
5 3 2
If you want to drop at a certain threshold, just set
如果你想下降到某个阈值,只需设置
df2.ix[:,-1]>threshold]
回答by arnold
I do not know whether there is a function available in Pandas
to do this task. However, I tried to make a workaround to deal with your problem.
我不知道是否有可用的函数Pandas
来执行此任务。但是,我尝试了一种解决方法来解决您的问题。
Here is the full code.
这是完整的代码。
import pandas as pd
dictionary = {'userid':[1,1,1,1,2,2,2],
'itemid':[1,1,3,4,1,2,3]}
df = pd.DataFrame(dictionary, columns=['userid', 'itemid'])
selected_user = []
for user in df['userid'].drop_duplicates().tolist():
items = df.loc[df['userid']==user]['itemid'].tolist()
if len(items) != len(set(items)): continue
else: selected_user.append(user)
result = df.loc[(df['userid'].isin(selected_user))]
This code will result the following outcome.
此代码将导致以下结果。
userid itemid
4 2 1
5 2 2
6 2 3
Hope it helps.
希望能帮助到你。