Python tensorflow 中的 eval() 和 run()
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/38987466/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
eval() and run() in tensorflow
提问by Ramesh-X
I'm referring to Deep MNIST for Experts tutorialgiven by the tensorflow. I have a problem in Train and Evaluatepart of that tutorial. There they have given a sample code as follows.
我指的是tensorflow给出的Deep MNIST for Experts 教程。我在该教程的训练和评估部分遇到了问题。他们在那里给出了一个示例代码,如下所示。
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images,
y_: mnist.test.labels, keep_prob: 1.0}))
So in these code segment they have used accuracy.eval()
at one time. And other time train_step.run()
. As I know of both of them are tensor variables.
所以在这些代码段中他们曾经使用accuracy.eval()
过一次。和其他时间train_step.run()
。据我所知,它们都是张量变量。
And in some cases, I have seen like
在某些情况下,我看到像
sess.run(variable, feed_dict)
So my question is what are the differences between these 3 implementations. And how can I know what to use when..?
所以我的问题是这 3 个实现之间有什么区别。我怎么知道什么时候用..?
Thank You!!
谢谢你!!
回答by fwalch
If you have only one default session, they are basically the same.
如果您只有一个默认会话,则它们基本相同。
From https://github.com/tensorflow/tensorflow/blob/v1.12.0/tensorflow/python/framework/ops.py#L2351:
从https://github.com/tensorflow/tensorflow/blob/v1.12.0/tensorflow/python/framework/ops.py#L2351:
op.run() is a shortcut for calling tf.get_default_session().run(op)
op.run() 是调用 tf.get_default_session().run(op) 的快捷方式
From https://github.com/tensorflow/tensorflow/blob/v1.12.0/tensorflow/python/framework/ops.py#L691:
从https://github.com/tensorflow/tensorflow/blob/v1.12.0/tensorflow/python/framework/ops.py#L691:
t.eval() is a shortcut for calling tf.get_default_session().run(t)
t.eval() 是调用 tf.get_default_session().run(t) 的快捷方式
Difference between Tensor and Operation:
张量和运算的区别:
Tensor: https://www.tensorflow.org/api_docs/python/tf/Tensor
张量:https: //www.tensorflow.org/api_docs/python/tf/Tensor
Operation: https://www.tensorflow.org/api_docs/python/tf/Operation
操作:https: //www.tensorflow.org/api_docs/python/tf/Operation
Note: the Tensor class will be replaced by Output in the future. Currently these two are aliases for each other.
注意:Tensor 类将来会被 Output 替换。目前这两个是彼此的别名。
回答by idnavid
The difference is in Operations vs. Tensors. Operations use run() and Tensors use eval().
区别在于操作与张量。操作使用 run(),张量使用 eval()。
There seems to be a reference to this question in TensorFlow FAQ: https://www.tensorflow.org/programmers_guide/faq#running_a_tensorflow_computation
TensorFlow FAQ 中似乎有对这个问题的引用:https://www.tensorflow.org/programmers_guide/faq#running_a_tensorflow_computation
The section addresses the following question: What is the difference between Session.run() and Tensor.eval()?
该部分解决了以下问题:Session.run() 和 Tensor.eval() 之间有什么区别?