pandas DataFrame:规范化一个 JSON 列并与其他列合并
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/49671693/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
pandas DataFrame: normalize one JSON column and merge with other columns
提问by stack_lech
I have a pandas DataFrame containing one column with multiple JSON data items as list of dicts. I want to normalize the JSON column and duplicate the non-JSON columns:
我有一个包含一列的 Pandas DataFrame,其中包含多个 JSON 数据项作为字典列表。我想规范化 JSON 列并复制非 JSON 列:
# creating dataframe
df_actions = pd.DataFrame(columns=['id', 'actions'])
rows = [[12,json.loads('[{"type": "a","value": "17"},{"type": "b","value": "19"}]')],
[15, json.loads('[{"type": "a","value": "1"},{"type": "b","value": "3"},{"type": "c","value": "5"}]')]]
df_actions.loc[0] = rows[0]
df_actions.loc[1] = rows[1]
>>>df_actions
id actions
0 12 [{'type': 'a', 'value': '17'}, {'type': 'b', '...
1 15 [{'type': 'a', 'value': '1'}, {'type': 'b', 'v...
I want
我想要
>>>df_actions_parsed
id type value
12 a 17
12 b 19
15 a 1
15 b 3
15 c 5
I can normalize JSON data using:
我可以使用以下方法规范化 JSON 数据:
pd.concat([pd.DataFrame(json_normalize(x)) for x in df_actions['actions']],ignore_index=True)
but I don't know how to join that back to the id column of the original DataFrame.
但我不知道如何将其连接回原始 DataFrame 的 id 列。
回答by jezrael
You can use concat
with dict comprehension
with pop
for extract column, remove second level and join
to original:
您可以使用concat
与dict comprehension
与pop
用于提取塔,除去二级和join
原始:
df1 = (pd.concat({i: pd.DataFrame(x) for i, x in df_actions.pop('actions').items()})
.reset_index(level=1, drop=True)
.join(df_actions)
.reset_index(drop=True))
What is same as:
什么是相同的:
df1 = (pd.concat({i: json_normalize(x) for i, x in df_actions.pop('actions').items()})
.reset_index(level=1, drop=True)
.join(df_actions)
.reset_index(drop=True))
print (df1)
type value id
0 a 17 12
1 b 19 12
2 a 1 15
3 b 3 15
4 c 5 15