如何从 Pandas DataFrame 中“反透视”特定列?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/23354124/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:58:56  来源:igfitidea点击:

How can I "unpivot" specific columns from a pandas DataFrame?

pythonpandaspivot-table

提问by Racing Tadpole

I have a pandas DataFrame, eg:

我有一个Pandas数据帧,例如:

x = DataFrame.from_dict({'farm' : ['A','B','A','B'], 
                         'fruit':['apple','apple','pear','pear'], 
                         '2014':[10,12,6,8], 
                         '2015':[11,13,7,9]})

ie:

IE:

   2014  2015 farm  fruit
0    10    11    A  apple
1    12    13    B  apple
2     6     7    A   pear
3     8     9    B   pear

How can I convert it to this: ?

我怎样才能把它转换成这个:?

  farm  fruit  value  year
0    A  apple     10  2014
1    B  apple     12  2014
2    A   pear      6  2014
3    B   pear      8  2014
4    A  apple     11  2015
5    B  apple     13  2015
6    A   pear      7  2015
7    B   pear      9  2015

I have tried stackand unstackbut haven't been able to make it work.

我已经尝试过stackunstack但一直无法让它发挥作用。

Thanks!

谢谢!

回答by Marius

This can be done with pd.melt():

这可以通过以下方式完成pd.melt()

# value_name is 'value' by default, but setting it here to make it clear
pd.melt(x, id_vars=['farm', 'fruit'], var_name='year', value_name='value')

Result:

结果:

  farm  fruit  year  value
0    A  apple  2014     10
1    B  apple  2014     12
2    A   pear  2014      6
3    B   pear  2014      8
4    A  apple  2015     11
5    B  apple  2015     13
6    A   pear  2015      7
7    B   pear  2015      9

[8 rows x 4 columns]

I'm not sure how common "melt" is as the name for this kind of operation, but that's what it's called in R's reshape2package, which probably inspired the name here.

我不确定“melt”作为这种操作的名称有多常见,但这就是它在 Rreshape2包中的名称,这可能启发了这里的名称。