Python 如何在 Pandas 的特定列索引处插入一列?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/18674064/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
how do I insert a column at a specific column index in pandas?
提问by HappyPy
Can I insert a column at a specific column index in pandas?
我可以在 Pandas 的特定列索引处插入一列吗?
import pandas as pd
df = pd.DataFrame({'l':['a','b','c','d'], 'v':[1,2,1,2]})
df['n'] = 0
This will put column n
as the last column of df
, but isn't there a way to tell df
to put n
at the beginning?
这会将列n
作为 的最后一列df
,但是没有办法告诉df
将放在n
开头吗?
采纳答案by Jeff
see docs: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
见文档:http: //pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.insert.html
using loc = 0 will insert at the beginning
使用 loc = 0 将在开头插入
df.insert(loc, column, value)
df = pd.DataFrame({'B': [1, 2, 3], 'C': [4, 5, 6]})
df
Out:
B C
0 1 4
1 2 5
2 3 6
idx = 0
new_col = [7, 8, 9] # can be a list, a Series, an array or a scalar
df.insert(loc=idx, column='A', value=new_col)
df
Out:
A B C
0 7 1 4
1 8 2 5
2 9 3 6
回答by Nic
You could try to extract columns as list, massage this as you want, and reindex your dataframe:
您可以尝试将列提取为列表,根据需要对其进行按摩,然后重新索引您的数据框:
>>> cols = df.columns.tolist()
>>> cols = [cols[-1]]+cols[:-1] # or whatever change you need
>>> df.reindex(columns=cols)
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
EDIT: this can be done in one line ; however, this looks a bit ugly. Maybe some cleaner proposal may come...
编辑:这可以在一行中完成;然而,这看起来有点难看。也许一些更清洁的建议可能会出现......
>>> df.reindex(columns=['n']+df.columns[:-1].tolist())
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
回答by Hugo Vares
If you want a single value for all rows:
如果您想要所有行的单个值:
df.insert(0,'name_of_column','')
df['name_of_column'] = value
Edit:
编辑:
You can also:
你也可以:
df.insert(0,'name_of_column',value)