Python 如何使用 Pandas 数据框创建滞后数据结构
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/20410312/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to create a lagged data structure using pandas dataframe
提问by Mannaggia
Example
例子
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
print s
1 5
2 4
3 3
4 2
5 1
Is there an efficient way to create a series. e.g. containing in each row the lagged values (in this example up to lag 2)
有没有一种有效的方法来创建一个系列。例如,在每一行中包含滞后值(在本例中最多滞后 2)
3 [3, 4, 5]
4 [2, 3, 4]
5 [1, 2, 3]
This corresponds to s=pd.Series([[3,4,5],[2,3,4],[1,2,3]], index=[3,4,5])
这对应于s=pd.Series([[3,4,5],[2,3,4],[1,2,3]], index=[3,4,5])
How can this be done in an efficient way for dataframes with a lot of timeseries which are very long?
对于具有很多很长的时间序列的数据帧,如何以有效的方式完成此操作?
Thanks
谢谢
Edited after seeing the answers
看到答案后修改
ok, at the end I implemented this function:
好的,最后我实现了这个功能:
def buildLaggedFeatures(s,lag=2,dropna=True):
'''
Builds a new DataFrame to facilitate regressing over all possible lagged features
'''
if type(s) is pd.DataFrame:
new_dict={}
for col_name in s:
new_dict[col_name]=s[col_name]
# create lagged Series
for l in range(1,lag+1):
new_dict['%s_lag%d' %(col_name,l)]=s[col_name].shift(l)
res=pd.DataFrame(new_dict,index=s.index)
elif type(s) is pd.Series:
the_range=range(lag+1)
res=pd.concat([s.shift(i) for i in the_range],axis=1)
res.columns=['lag_%d' %i for i in the_range]
else:
print 'Only works for DataFrame or Series'
return None
if dropna:
return res.dropna()
else:
return res
it produces the wished outputs and manages the naming of columns in the resulting DataFrame.
它产生所需的输出并管理结果 DataFrame 中列的命名。
For a Series as input:
对于作为输入的系列:
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
res=buildLaggedFeatures(s,lag=2,dropna=False)
lag_0 lag_1 lag_2
1 5 NaN NaN
2 4 5 NaN
3 3 4 5
4 2 3 4
5 1 2 3
and for a DataFrame as input:
并将 DataFrame 作为输入:
s2=s=pd.DataFrame({'a':[5,4,3,2,1], 'b':[50,40,30,20,10]},index=[1,2,3,4,5])
res2=buildLaggedFeatures(s2,lag=2,dropna=True)
a a_lag1 a_lag2 b b_lag1 b_lag2
3 3 4 5 30 40 50
4 2 3 4 20 30 40
5 1 2 3 10 20 30
采纳答案by Andy Hayden
As mentioned, it could be worth looking into the rolling_ functions, which will mean you won't have as many copies around.
如前所述,可能值得研究rollback_functions,这意味着您不会有那么多副本。
One solution is to concatshiftedSeries together to make a DataFrame:
In [11]: pd.concat([s, s.shift(), s.shift(2)], axis=1)
Out[11]:
0 1 2
1 5 NaN NaN
2 4 5 NaN
3 3 4 5
4 2 3 4
5 1 2 3
In [12]: pd.concat([s, s.shift(), s.shift(2)], axis=1).dropna()
Out[12]:
0 1 2
3 3 4 5
4 2 3 4
5 1 2 3
Doing work on this will be more efficient that on lists...
做这方面的工作会比在列表上更有效率......
回答by lowtech
You can do following:
您可以执行以下操作:
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5])
res = pd.DataFrame(index = s.index)
for l in range(3):
res[l] = s.shift(l)
print res.ix[3:,:].as_matrix()
It produces:
它产生:
array([[ 3., 4., 5.],
[ 2., 3., 4.],
[ 1., 2., 3.]])
which I hope is very close to what you are actually want.
我希望这非常接近你真正想要的。
回答by ansonw
Very simple solution using pandas DataFrame:
使用 Pandas DataFrame 的非常简单的解决方案:
number_lags = 3
df = pd.DataFrame(data={'vals':[5,4,3,2,1]})
for lag in xrange(1, number_lags + 1):
df['lag_' + str(lag)] = df.vals.shift(lag)
#if you want numpy arrays with no null values:
df.dropna().values for numpy arrays
回答by Charlie Brummitt
I like to put the lag numbers in the columns by making the columns a MultiIndex. This way, the names of the columns are retained.
我喜欢通过将列设置为 a 将滞后数字放在列中MultiIndex。这样,列的名称将被保留。
Here's an example of the result:
下面是一个结果示例:
# Setup
indx = pd.Index([1, 2, 3, 4, 5], name='time')
s=pd.Series(
[5, 4, 3, 2, 1],
index=indx,
name='population')
shift_timeseries_by_lags(pd.DataFrame(s), [0, 1, 2])
Result: a MultiIndex DataFrame with two column labels: the original one ("population") and a new one ("lag"):
结果:一个带有两列标签的 MultiIndex DataFrame:原始标签(“population”)和新标签(“lag”):
Solution: Like in the accepted solution, we use DataFrame.shiftand then pandas.concat.
解决方案:就像在接受的解决方案中一样,我们使用DataFrame.shift然后pandas.concat。
def shift_timeseries_by_lags(df, lags, lag_label='lag'):
return pd.concat([
shift_timeseries_and_create_multiindex_column(df, lag,
lag_label=lag_label)
for lag in lags], axis=1)
def shift_timeseries_and_create_multiindex_column(
dataframe, lag, lag_label='lag'):
return (dataframe.shift(lag)
.pipe(append_level_to_columns_of_dataframe,
lag, lag_label))
I wish there were an easy way to append a list of labels to the existing columns. Here's my solution.
我希望有一种简单的方法可以将标签列表附加到现有列。这是我的解决方案。
def append_level_to_columns_of_dataframe(
dataframe, new_level, name_of_new_level, inplace=False):
"""Given a (possibly MultiIndex) DataFrame, append labels to the column
labels and assign this new level a name.
Parameters
----------
dataframe : a pandas DataFrame with an Index or MultiIndex columns
new_level : scalar, or arraylike of length equal to the number of columns
in `dataframe`
The labels to put on the columns. If scalar, it is broadcast into a
list of length equal to the number of columns in `dataframe`.
name_of_new_level : str
The label to give the new level.
inplace : bool, optional, default: False
Whether to modify `dataframe` in place or to return a copy
that is modified.
Returns
-------
dataframe_with_new_columns : pandas DataFrame with MultiIndex columns
The original `dataframe` with new columns that have the given `level`
appended to each column label.
"""
old_columns = dataframe.columns
if not hasattr(new_level, '__len__') or isinstance(new_level, str):
new_level = [new_level] * dataframe.shape[1]
if isinstance(dataframe.columns, pd.MultiIndex):
new_columns = pd.MultiIndex.from_arrays(
old_columns.levels + [new_level],
names=(old_columns.names + [name_of_new_level]))
elif isinstance(dataframe.columns, pd.Index):
new_columns = pd.MultiIndex.from_arrays(
[old_columns] + [new_level],
names=([old_columns.name] + [name_of_new_level]))
if inplace:
dataframe.columns = new_columns
return dataframe
else:
copy_dataframe = dataframe.copy()
copy_dataframe.columns = new_columns
return copy_dataframe
Update: I learned from this solutionanother way to put a new level in a column, which makes it unnecessary to use append_level_to_columns_of_dataframe:
更新:我从这个解决方案中学到了另一种在列中放置新级别的方法,这使得不必使用append_level_to_columns_of_dataframe:
def shift_timeseries_by_lags_v2(df, lags, lag_label='lag'):
return pd.concat({
'{lag_label}_{lag_number}'.format(lag_label=lag_label, lag_number=lag):
df.shift(lag)
for lag in lags},
axis=1)
Here's the result of shift_timeseries_by_lags_v2(pd.DataFrame(s), [0, 1, 2]):
这是结果shift_timeseries_by_lags_v2(pd.DataFrame(s), [0, 1, 2]):
回答by Ashutosh Tripathi
For a dataframe df with the lag to be applied on 'col name', you can use the shift function.
对于延迟应用于“col name”的数据帧 df,您可以使用 shift 函数。
df['lag1']=df['col name'].shift(1)
df['lag2']=df['col name'].shift(2)
回答by Bj?rn Backg?rd
For multiple (many of them) lags, this could be more compact:
对于多个(其中许多)滞后,这可能更紧凑:
df=pd.DataFrame({'year': range(2000, 2010), 'gdp': [234, 253, 256, 267, 272, 273, 271, 275, 280, 282]})
df.join(pd.DataFrame({'gdp_' + str(lag): df['gdp'].shift(lag) for lag in range(1,4)}))
回答by c.Parsi
Assuming you are focusing on a single column in your data frame, saved into s. This shortcode will generate instances of the column with 7 lags.
假设您专注于数据框中的单个列,并保存到 s 中。此简码将生成具有 7 个滞后的列的实例。
s=pd.Series([5,4,3,2,1], index=[1,2,3,4,5], name='test')
shiftdf=pd.DataFrame()
for i in range(3):
shiftdf = pd.concat([shiftdf , s.shift(i).rename(s.name+'_'+str(i))], axis=1)
shiftdf
>>
test_0 test_1 test_2
1 5 NaN NaN
2 4 5.0 NaN
3 3 4.0 5.0
4 2 3.0 4.0
5 1 2.0 3.0
回答by mac13k
Here is a cool one liner for lagged features using pd.concat:
这是一个很酷的单线用于滞后功能,使用pd.concat:
lagged = pd.concat([s.shift(lag) for lag in range(3)], axis=1).dropna()


