从 Pandas 数据框中删除带有空列表的行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/34162625/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:21:30  来源:igfitidea点击:

Remove rows with empty lists from pandas data frame

pythonlistpandasisnull

提问by Ben Price

I have a data frame with some columns with empty lists and others with lists of strings:

我有一个数据框,其中一些列带有空列表,而另一些列带有字符串列表:

       donation_orgs                              donation_context
0            []                                           []
1   [the research of Dr. ...]   [In lieu of flowers , memorial donations ...]

I'm trying to return a data set without any of the rows where there are empty lists.

我正在尝试返回一个没有任何空列表行的数据集。

I've tried just checking for null values:

我试过只检查空值:

dfnotnull = df[df.donation_orgs != []]
dfnotnull

and

dfnotnull = df[df.notnull().any(axis=1)]
pd.options.display.max_rows=500
dfnotnull

And I've tried looping through and checking for values that exist, but I think the lists aren't returning Null or None like I thought they would:

我已经尝试遍历并检查存在的值,但我认为列表不会像我想象的那样返回 Null 或 None :

dfnotnull = pd.DataFrame(columns=('donation_orgs', 'donation_context'))
for i in range(0,len(df)):
    if df['donation_orgs'].iloc(i):
        dfnotnull.loc[i] = df.iloc[i]

All three of the above methods simply return every row in the original data frame.=

以上三种方法都简单地返回原始数据框中的每一行。=

回答by Victor

To avoid converting to strand actually use the lists, you can do this:

为避免转换为str并实际使用lists,您可以这样做:

df[df['donation_orgs'].map(lambda d: len(d)) > 0]

It maps the donation_orgscolumn to the length of the listsof each row and keeps only the ones that have at least one element, filtering out empty lists.

它将donation_orgs列映射到每一行的列表长度,并只保留至少具有一个 element 的那些,过滤掉空列表。

It returns

它返回

Out[1]: 
                            donation_context          donation_orgs
1  [In lieu of flowers , memorial donations]  [the research of Dr.]

as expected.

正如预期的那样。

回答by Woody Pride

You could try slicing as though the data frame were strings instead of lists:

您可以尝试切片,就好像数据框是字符串而不是列表:

import pandas as pd
df = pd.DataFrame({
'donation_orgs' : [[], ['the research of Dr.']],
'donation_context': [[], ['In lieu of flowers , memorial donations']]})

df[df.astype(str)['donation_orgs'] != '[]']

Out[9]: 
                            donation_context          donation_orgs
1  [In lieu of flowers , memorial donations]  [the research of Dr.]

回答by Amir Imani

You can use the following one-liner:

您可以使用以下单行:

df[(df['donation_orgs'].str.len() != 0) | (df['donation_context'].str.len() != 0)]

回答by Mark

Assuming that you read data from a CSV, the other possible solution could be this:

假设您从 CSV 读取数据,另一种可能的解决方案可能是:

import pandas as pd

df = pd.read_csv('data.csv', na_filter=True, na_values='[]')
df.dropna()

na_filterdefines additional string to recognize as NaN. I tested this on pandas-0.24.2.

na_filter定义附加字符串以识别为 NaN。我在pandas-0.24.2.