删除重复项,保留最新日期,Pandas 数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/52395820/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 06:02:15  来源:igfitidea点击:

Drop duplicates, keep most recent date, Pandas dataframe

pythonpandas

提问by PJW

I have a Pandas dataframe containing two columns: a datetime column, and a column of integers representing station IDs. I need a new dataframe with the following modifications:

我有一个包含两列的 Pandas 数据框:一个日期时间列和一个代表站 ID 的整数列。我需要一个具有以下修改的新数据框:

For each set of duplicate STATION_IDvalues, keep the row with the most recent entry for DATE_CHANGED. If the duplicate entries for the STATION_IDall contain the same DATE_CHANGEDthen drop the duplicates and retain a single row for the STATION_ID. If there are no duplicates for the STATION_IDvalue, simply retain the row.

对于每组重复STATION_ID值,保留具有最新条目的行DATE_CHANGED。如果所有的重复条目STATION_ID包含相同的条目,DATE_CHANGED则删除重复项并为STATION_ID. 如果该STATION_ID值没有重复项,只需保留该行。

Dataframe (sorted by STATION_ID):

数据框(按 排序STATION_ID):

              DATE_CHANGED  STATION_ID
0      2006-06-07 06:00:00           1
1      2000-09-26 06:00:00           1
2      2000-09-26 06:00:00           1
3      2000-09-26 06:00:00           1
4      2001-06-06 06:00:00           2
5      2005-07-29 06:00:00           2
6      2005-07-29 06:00:00           2
7      2001-06-06 06:00:00           2
8      2001-06-08 06:00:00           4
9      2003-11-25 07:00:00           4
10     2001-06-12 06:00:00           7
11     2001-06-04 06:00:00           8
12     2017-04-03 18:36:16           8
13     2017-04-03 18:36:16           8
14     2017-04-03 18:36:16           8
15     2001-06-04 06:00:00           8
16     2001-06-08 06:00:00          10
17     2001-06-08 06:00:00          10
18     2001-06-08 06:00:00          11
19     2001-06-08 06:00:00          11
20     2001-06-08 06:00:00          12
21     2001-06-08 06:00:00          12
22     2001-06-08 06:00:00          13
23     2001-06-08 06:00:00          13
24     2001-06-08 06:00:00          14
25     2001-06-08 06:00:00          14
26     2001-06-08 06:00:00          15
27     2017-08-07 17:48:25          15
28     2001-06-08 06:00:00          15
29     2017-08-07 17:48:25          15
...                    ...         ...
157066 2018-08-06 14:11:28       71655
157067 2018-08-06 14:11:28       71656
157068 2018-08-06 14:11:28       71656
157069 2018-09-11 21:45:05       71664
157070 2018-09-11 21:45:05       71664
157071 2018-09-11 21:45:05       71664
157072 2018-09-11 21:41:04       71664
157073 2018-08-09 15:22:07       71720
157074 2018-08-09 15:22:07       71720
157075 2018-08-09 15:22:07       71720
157076 2018-08-23 12:43:12       71899
157077 2018-08-23 12:43:12       71899
157078 2018-08-23 12:43:12       71899
157079 2018-09-08 20:21:43       71969
157080 2018-09-08 20:21:43       71969
157081 2018-09-08 20:21:43       71969
157082 2018-09-08 20:21:43       71984
157083 2018-09-08 20:21:43       71984
157084 2018-09-08 20:21:43       71984
157085 2018-09-05 18:46:18       71985
157086 2018-09-05 18:46:18       71985
157087 2018-09-05 18:46:18       71985
157088 2018-09-08 20:21:44       71990
157089 2018-09-08 20:21:44       71990
157090 2018-09-08 20:21:44       71990
157091 2018-09-08 20:21:43       72003
157092 2018-09-08 20:21:43       72003
157093 2018-09-08 20:21:43       72003
157094 2018-09-10 17:06:18       72024
157095 2018-09-10 17:15:05       72024

[157096 rows x 2 columns]

DATE_CHANGEDis dtype: datetime64[ns]

DATE_CHANGEDdtype: datetime64[ns]

STATION_IDis dtype: int64

STATION_IDdtype: int64

pandas==0.23.4

Pandas==0.23.4

python==2.7.15

蟒蛇==2.7.15

回答by sacuL

Try:

尝试:

df.sort_values('DATE_CHANGED').drop_duplicates('STATION_ID',keep='last')