Pandas dataframe.query 方法语法
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/41922130/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas dataframe.query method syntax
提问by ade1e
Question:
题:
I would like to gain a better understanding of the Pandas DataFrame.querymethod and what the following expression represents:
我想更好地了解 Pandas DataFrame.query方法以及以下表达式所代表的含义:
match = dfDays.query('index > @x.name & price >= @x.target')
What does @x.name
represent?
什么是@x.name
代表?
I understand what the resulting output is for this code (a new column with pandas.tslib.Timestamp
data) but don't have a clear understanding of the expression used to get this end result.
我了解此代码(包含pandas.tslib.Timestamp
数据的新列)的结果输出是什么,但对用于获得此最终结果的表达式没有清晰的理解。
Data:
数据:
From here:
从这里:
Vectorised way to query date and price data
np.random.seed(seed=1)
rng = pd.date_range('1/1/2000', '2000-07-31',freq='D')
weeks = np.random.uniform(low=1.03, high=3, size=(len(rng),))
ts2 = pd.Series(weeks
,index=rng)
dfDays = pd.DataFrame({'price':ts2})
dfWeeks = dfDays.resample('1W-Mon').first()
dfWeeks['target'] = (dfWeeks['price'] + .5).round(2)
def find_match(x):
match = dfDays.query('index > @x.name & price >= @x.target')
if not match.empty:
return match.index[0]
dfWeeks.assign(target_hit=dfWeeks.apply(find_match, 1))
采纳答案by piRSquared
Everything @MaxU said is perfect!
@MaxU 所说的一切都是完美的!
I wanted to add some context to the specific problem that this was applied to.
我想为所应用的特定问题添加一些上下文。
find_match
find_match
This is a helper function that is used in the dataframe dfWeeks.apply
. Two things to note:
这是在 dataframe 中使用的辅助函数dfWeeks.apply
。有两点需要注意:
find_match
takes a single argumentx
. This will be a single row ofdfWeeks
.- Each row is a
pd.Series
object and each row will be passed through this function. This is the nature of usingapply
. - When
apply
passes this row to the helper function, the row has aname
attribute that is equal to the index value for that row in the dataframe. In this case, I know that the index value is apd.Timestamp
and I'll use it to do the comparing I need to do.
- Each row is a
find_match
referencesdfDays
which is outside the scope offind_match
itself.
find_match
需要一个参数x
。这将是dfWeeks
.- 每一行都是一个
pd.Series
对象,每一行都将通过这个函数传递。这是使用apply
. - 当
apply
将此行传递给辅助函数时,该行的name
属性等于数据帧中该行的索引值。在这种情况下,我知道索引值是 apd.Timestamp
,我将用它来做我需要做的比较。
- 每一行都是一个
find_match
dfDays
超出find_match
自身范围的引用。
I didn't have to use query
... I like using query
. It is my opinion that it makes some code prettier. The following function, as provided by the OP, could've been written differently
我不必使用query
...我喜欢使用query
. 我认为它使一些代码更漂亮。OP 提供的以下函数可以用不同的方式编写
def find_match(x):
"""Original"""
match = dfDays.query('index > @x.name & price >= @x.target')
if not match.empty:
return match.index[0]
dfWeeks.assign(target_hit=dfWeeks.apply(find_match, 1))
find_match_alt
find_match_alt
Or we could've done this, which may help to explain what the query
string is doing above
或者我们可以这样做,这可能有助于解释query
上面的字符串在做什么
def find_match_alt(x):
"""Alternative to OP's"""
date_is_afterwards = dfDays.index > x.name
price_target_is_met = dfDays.price >= x.target
both_are_true = price_target_is_met & date_is_afterwards
if (both_are_true).any():
return dfDays[both_are_true].index[0]
dfWeeks.assign(target_hit=dfWeeks.apply(find_match_alt, 1))
Comparing these two functions should give good perspective.
比较这两个函数应该会给出很好的视角。
回答by MaxU
@x.name
- @
helps .query()
to understand that x
is an external object (doesn't belong to the DataFrame for which the query() method was called). In this case x
is a DataFrame. It could be a scalar value as well.
@x.name
-@
有助于.query()
理解这x
是一个外部对象(不属于调用 query() 方法的 DataFrame)。在这种情况下x
是一个 DataFrame。它也可以是一个标量值。
I hope this small demonstration will help you to understand it:
我希望这个小演示能帮助你理解它:
In [79]: d1
Out[79]:
a b c
0 1 2 3
1 4 5 6
2 7 8 9
In [80]: d2
Out[80]:
a x
0 1 10
1 7 11
In [81]: d1.query("a in @d2.a")
Out[81]:
a b c
0 1 2 3
2 7 8 9
In [82]: d1.query("c < @d2.a")
Out[82]:
a b c
1 4 5 6
Scalar x
:
标量x
:
In [83]: x = 9
In [84]: d1.query("c == @x")
Out[84]:
a b c
2 7 8 9