Pandas:从 2D numpy 数组创建一个数据框并保留它们的顺序

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/41873198/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:52:09  来源:igfitidea点击:

Pandas: create a dataframe from 2D numpy arrays preserving their sequential order

pythonarrayspandasnumpydataframe

提问by FaCoffee

Say that you have 3 numpy arrays: lat, lon, val:

假设您有 3 个 numpy 数组:lat, lon, val

import numpy as np

lat=np.array([[10, 20, 30],
              [20, 11, 33],
              [21, 20, 10]])

lon=np.array([[100, 102, 103],
              [105, 101, 102],
              [100, 102, 103]])

val=np.array([[17, 2, 11],
              [86, 84, 1],
              [9, 5, 10]])

And say that you want to create a pandasdataframe where df.columns = ['lat', 'lon', 'val'], but since each value in latis associated with both a longand a valquantity, you want them to appear in the same row.

并假设您要创建一个pandas数据框 where df.columns = ['lat', 'lon', 'val'],但由于中的每个值lat都与 alongval数量相关联,因此您希望它们出现在同一行中。

Also, you want the row-wise order of each column to follow the positions in each array, so to obtain the following dataframe:

此外,您希望每列的行顺序跟随每个数组中的位置,以便获得以下数据帧:

      lat   lon   val
0     10    100    17
1     20    102    2
2     30    103    11
3     20    105    86
...   ...   ...    ...

So basically the first row in the dataframe stores the "first" quantities of each array, and so forth. How to do this?

所以基本上数据帧中的第一行存储每个数组的“第一个”数量,依此类推。这该怎么做?

I couldn't find a pythonic way of doing this, so any help will be much appreciated.

我找不到这样做的pythonic方式,所以任何帮助将不胜感激。

回答by jezrael

I think the simplest approach is flattening the arrays by using ravel:

我认为最简单的方法是使用ravel将数组展平:

df = pd.DataFrame({'lat': lat.ravel(), 'long': long.ravel(), 'val': val.ravel()})
print (df)
   lat  long  val
0   10   100   17
1   20   102    2
2   30   103   11
3   20   105   86
4   11   101   84
5   33   102    1
6   21   100    9
7   20   102    5
8   10   103   10

回答by Divakar

Something like this -

像这样的东西——

# Create stacked array
In [100]: arr = np.column_stack((lat.ravel(),long.ravel(),val.ravel()))

# Create dataframe from it and assign column names    
In [101]: pd.DataFrame(arr,columns=('lat','long','val'))
Out[101]: 
   lat  long  val
0   10   100   17
1   20   102    2
2   30   103   11
3   20   105   86
4   11   101   84
5   33   102    1
6   21   100    9
7   20   102    5
8   10   103   10

Runtime test -

运行时测试 -

In [103]: lat = np.random.rand(30,30)

In [104]: long = np.random.rand(30,30)

In [105]: val = np.random.rand(30,30)

In [106]: %timeit pd.DataFrame({'lat': lat.ravel(), 'long': long.ravel(), 'val': val.ravel()})
1000 loops, best of 3: 452 μs per loop

In [107]: arr = np.column_stack((lat.ravel(),long.ravel(),val.ravel()))

In [108]: %timeit np.column_stack((lat.ravel(),long.ravel(),val.ravel()))
100000 loops, best of 3: 12.4 μs per loop

In [109]: %timeit pd.DataFrame(arr,columns=('lat','long','val'))
1000 loops, best of 3: 217 μs per loop

回答by Divakar

No need to ravel first. You can just stack and go.

没必要先扯淡。你可以堆叠然后去。

lat, long, val = np.arange(5), np.arange(5), np.arange(5)
arr = np.stack((lat, long, val), axis=1)
cols = ['lat', 'long', 'val']
df = pd.DataFrame(arr, columns=cols)
   lat  long  val
0    0     0    0
1    1     1    1
2    2     2    2
3    3     3    3
4    4     4    4