Python 将熊猫 DateTimeIndex 转换为 Unix 时间?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/15203623/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 19:30:19  来源:igfitidea点击:

Convert pandas DateTimeIndex to Unix Time?

pythonpandas

提问by Christian Geier

What is the idiomatic way of converting a pandas DateTimeIndex to (an iterable of) Unix Time? This is probably not the way to go:

将熊猫 DateTimeIndex 转换为(可迭代的)Unix 时间的惯用方法是什么?这可能不是要走的路:

[time.mktime(t.timetuple()) for t in my_data_frame.index.to_pydatetime()]

采纳答案by root

As DatetimeIndexis ndarrayunder the hood, you can do the conversion without a comprehension (much faster).

由于DatetimeIndexndarray引擎盖下,你可以做转换没有理解(要快得多)。

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: from datetime import datetime

In [4]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]
   ...: index = pd.DatetimeIndex(dates)
   ...: 
In [5]: index.astype(np.int64)
Out[5]: array([1335830400000000000, 1335916800000000000, 1336003200000000000], 
        dtype=int64)

In [6]: index.astype(np.int64) // 10**9
Out[6]: array([1335830400, 1335916800, 1336003200], dtype=int64)

%timeit [t.value // 10 ** 9 for t in index]
10000 loops, best of 3: 119 us per loop

%timeit index.astype(np.int64) // 10**9
100000 loops, best of 3: 18.4 us per loop

回答by Andy Hayden

Note: Timestamp is just unix time with nanoseconds (so divide it by 10**9):

注意:时间戳只是带有纳秒的 unix 时间(因此将其除以 10**9):

[t.value // 10 ** 9 for t in tsframe.index]

For example:

例如:

In [1]: t = pd.Timestamp('2000-02-11 00:00:00')

In [2]: t
Out[2]: <Timestamp: 2000-02-11 00:00:00>

In [3]: t.value
Out[3]: 950227200000000000L

In [4]: time.mktime(t.timetuple())
Out[4]: 950227200.0

As @root points out it's faster to extract the array of values directly:

正如@root 指出的那样,直接提取值数组会更快:

tsframe.index.astype(np.int64) // 10 ** 9

回答by Rani

A summary of other answers:

其他答案的总结:

df['<time_col>'].astype(np.int64) // 10**9

If you want to keep the milliseconds divide by 10**6instead

如果你想保持毫秒除以10**6代替

回答by Elias Hasle

Complementing the other answers: //10**9will do a flooring divide, which gives full past seconds rather than the nearest value in seconds. A simple way to get more reasonable rounding, if that is desired, is to add 5*10**8 - 1before doing the flooring divide.

补充其他答案://10**9将做一个地板除法,它给出完整的过去秒而不是最接近的值(以秒为单位)。如果需要,获得更合理四舍五入的一种简单方法是5*10**8 - 1在进行地板除法之前添加。

回答by thomas

To address the case of NaT, which above solutions will convert to large negative ints, in pandas>=0.24 a possible solution would be:

为了解决 NaT 的情况,上述解决方案将转换为大的负整数,在 pandas>=0.24 中,一个可能的解决方案是:

def datetime_to_epoch(ser):
    """Don't convert NaT to large negative values."""
    if ser.hasnans:
        res = ser.dropna().astype('int64').astype('Int64').reindex(index=ser.index)
    else:
        res = ser.astype('int64')

    return res // 10**9

In the case of missing values this will return the nullable int type 'Int64' (ExtensionType pd.Int64Dtype):

在缺少值的情况下,这将返回可为空的 int 类型“Int64”(ExtensionType pd.Int64Dtype):

In [5]: dt = pd.to_datetime(pd.Series(["2019-08-21", "2018-07-28", np.nan]))                                                                                                                                                                                                    
In [6]: datetime_to_epoch(dt)                                                                                                                                                                                                                                                   
Out[6]: 
0    1566345600
1    1532736000
2           NaN
dtype: Int64

Otherwise a regular int64:

否则是常规的 int64:

In [7]: datetime_to_epoch(dt[:2])                                                                                                                                                                                                                                               
Out[7]: 
0    1566345600
1    1532736000
dtype: int64

回答by Nour

If you have tried this on the datetime column of your dataframe:

如果您在数据框的日期时间列上尝试过此操作:

dframe['datetime'].astype(np.int64) // 10**9

& that you are struggling with the following error:TypeError: int() argument must be a string, a bytes-like object or a number, not 'Timestamp'you can just use these two lines :

&您正在为以下错误而苦苦挣扎:TypeError: int() argument must be a string, a bytes-like object or a number, not 'Timestamp'您可以只使用这两行:

dframe.index = pd.DatetimeIndex(dframe['datetime'])
dframe['datetime']= dframe.index.astype(np.int64)// 10**9