pandas 引入条件时不能使用 fillna

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/44111425/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:39:48  来源:igfitidea点击:

Cannot use fillna when a condition is introduced

pythonpandas

提问by mlee_jordan

I am very new to python. Trying to do some imputation in my data. however, I could not manage. Here is the simple code:

我对python很陌生。试图对我的数据进行一些插补。然而,我无法应付。这是简单的代码:

df['a'] = ""
df.loc[(df['c'] >= 0) & (df['c'] <= 43), 'a'] = 1
df.loc[(df['c'] >= 44) & (df['c'] <= 96), 'a'] = 2
df.loc[(df['c'] >= 97) & (df['c'] <= 151), 'a'] = 3
df.loc[(df['c'] >= 152) & (df['c'] <= 273), 'a'] = 4

print(df[df['a'] == 1]['b'].median())
print(df[df['a'] == 2]['b'].median())
print(df[df['a'] == 3]['b'].median())
print(df[df['a'] == 4]['b'].median())

print(df[df['a'] == 1]['b'].median())

    df[df['a'] == 1]['b'].fillna(df[df['a'] == 1]['b'].median(), inplace=True)

When I tried this it threw a warning:

当我尝试这样做时,它发出了警告:

A value is trying to be set on a copy of a slice from a DataFrame

How can I apply fillna properly?

如何正确使用fillna?

回答by jezrael

Use loc:

使用loc

df = pd.DataFrame({'c':[10,50,100,200] * 3,
                   'b':[1,3,8,np.nan,5,8,np.nan,7, np.nan, 4,1,0]})
#print (df)
m1 = (df['c'] >= 0) & (df['c'] <= 43)
m2 = (df['c'] >= 44) & (df['c'] <= 96)
m3 = (df['c'] >= 97) & (df['c'] <= 151)
m4 = (df['c'] >= 152) & (df['c'] <= 273)

df.loc[m1,'b'] = df.loc[m1,'b'].fillna(df.loc[m1,'b'].median())
df.loc[m2,'b'] = df.loc[m2,'b'].fillna(df.loc[m2,'b'].median())
df.loc[m3,'b'] = df.loc[m3,'b'].fillna(df.loc[m3,'b'].median())
df.loc[m4,'b'] = df.loc[m4,'b'].fillna(df.loc[m4,'b'].median())

print (df)
      b    c
0   1.0   10
1   3.0   50
2   8.0  100
3   3.5  200
4   5.0   10
5   8.0   50
6   4.5  100
7   7.0  200
8   3.0   10
9   4.0   50
10  1.0  100
11  0.0  200

But better is use cutfor category column and then groupbywith custom function with fillnaand median:

但更好的是cut用于类别列,然后groupby使用带有fillna和的自定义函数median

bins = [0,43,96,151,273]
labels=[1,2, 3, 4]
df['a'] = pd.cut(df['c'], bins=bins, labels=labels, include_lowest=True)
df['b'] = df.groupby('a')['b'].apply(lambda x: x.fillna(x.median()))
print (df)
      b    c  a
0   1.0   10  1
1   3.0   50  2
2   8.0  100  3
3   3.5  200  4
4   5.0   10  1
5   8.0   50  2
6   4.5  100  3
7   7.0  200  4
8   3.0   10  1
9   4.0   50  2
10  1.0  100  3
11  0.0  200  4

回答by Allen

#Use.loc when you try to change df values.
df.loc[df.a==1,'b'] = df.loc[df.a==1,'b'].fillna(df[df['a'] == 1]['b'].median())