scala 过滤器和scala spark sql中的where之间的区别
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/33885979/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Difference between filter and where in scala spark sql
提问by Ishan
I've tried both but it works same
我都试过了,但效果一样
example
例子
val items = List(1, 2, 3)
using filter
使用过滤器
employees.filter($"emp_id".isin(items:_*)).show
using where
使用哪里
employees.where($"emp_id".isin(items:_*)).show
Result is same for the both
两者的结果相同
+------+------+------+-------+------+-------+
|EMP_ID|F_NAME|SALARY|DEPT_ID|L_NAME|MANAGER|
+------+------+------+-------+------+-------+
| 6| E6| 2000| 4| L6| 2|
| 7| E7| 3000| 4| L7| 1|
| 8| E8| 4000| 2| L8| 2|
| 9| E9| 1500| 2| L9| 1|
| 10| E10| 1000| 2| L10| 1|
| 4| E4| 400| 3| L4| 1|
| 2| E2| 200| 1| L2| 1|
| 3| E3| 700| 2| L3| 2|
| 5| E5| 300| 2| L5| 2|
+------+------+------+-------+------+-------+
回答by Alexey Romanov
Filters rows using the given condition. This is an alias for filter.
使用给定条件过滤行。这是过滤器的别名。
filteris simply the standard Scala (and FP in general) name for such a function, and whereis for people who prefer SQL.
filter只是这种函数的标准 Scala(和一般的 FP)名称,适用where于喜欢 SQL 的人。
回答by Aleksey Yakushev
It's related also with Spark optimization. Look at short example: Big parquet file in HDFS with structure and data:
它也与 Spark 优化有关。看一个简短的例子:HDFS 中的大型镶木地板文件,具有结构和数据:
[hadoop@hdpnn ~]$ hadoop fs -ls /user/tickers/ticks.parquet
Found 27 items
drwxr-xr-x - root root 0 2019-01-16 12:55 /user/tickers/ticks.parquet/ticker_id=1
drwxr-xr-x - root root 0 2019-01-16 13:58 /user/tickers/ticks.parquet/ticker_id=10
drwxr-xr-x - root root 0 2019-01-16 14:04 /user/tickers/ticks.parquet/ticker_id=11
drwxr-xr-x - root root 0 2019-01-16 14:10 /user/tickers/ticks.parquet/ticker_id=12
...
Where each partition has partitions inside (by date)
每个分区内部都有分区(按日期)
[hadoop@hdpnn ~]$ hadoop fs -ls /user/tickers/ticks.parquet/ticker_id=1
Found 6 items
drwxr-xr-x - root root 0 2019-01-16 12:55 /user/tickers/ticks.parquet/ticker_id=1/ddate=2019-01-09
drwxr-xr-x - root root 0 2019-01-16 12:50 /user/tickers/ticks.parquet/ticker_id=1/ddate=2019-01-10
drwxr-xr-x - root root 0 2019-01-16 12:53 /user/tickers/ticks.parquet/ticker_id=1/ddate=2019-01-11
...
Structure:
结构:
scala> spark.read.parquet("hdfs://hdpnn:9000/user/tickers/ticks.parquet").printSchema
root
|-- ticker_id: integer (nullable = true)
|-- ddate: date (nullable = true)
|-- db_tsunx: long (nullable = true)
|-- ask: double (nullable = true)
|-- bid: double (nullable = true)
For example, you have DS like this:
例如,您有这样的 DS:
val maxTsunx = spark.read.parquet("hdfs://hdpnn:9000/user/tickers/ticks.parquet").select(col("ticker_id"),col("db_tsunx")).groupBy("ticker_id").agg(max("db_tsunx"))
that contains max(db_tsunx) for each ticker_id
包含每个 ticker_id 的 max(db_tsunx)
F.E.: you want get data just for only one ticker from this DS
FE:您只想从这个 DS 中获取一个代码的数据
You have 2 ways:
你有两种方式:
1) maxTsunx.filter(r => r.get(0) == 1)
2) maxTsunx.where(col("ticker_id")===1)
and it's a very different "Physical Plan"
这是一个非常不同的“物理计划”
look at 1)
看 1)
== Physical Plan ==
*(2) Filter <function1>.apply
+- *(2) HashAggregate(keys=[ticker_id#37], functions=[max(db_tsunx#39L)], output=[ticker_id#37, max(db_tsunx)#52L])
+- Exchange hashpartitioning(ticker_id#37, 200)
+- *(1) HashAggregate(keys=[ticker_id#37], functions=[partial_max(db_tsunx#39L)], output=[ticker_id#37, max#61L])
+- *(1) Project [ticker_id#37, db_tsunx#39L]
+- *(1) FileScan parquet [db_tsunx#39L,ticker_id#37,ddate#38] Batched: true, Format: Parquet,
Location: InMemoryFileIndex[hdfs://hdpnn:9000/user/tickers/ticks.parquet],
PartitionCount: 162,
PartitionFilters: [],
PushedFilters: [],
ReadSchema: struct<db_tsunx:bigint>
2)
2)
== Physical Plan ==
*(2) HashAggregate(keys=[ticker_id#84], functions=[max(db_tsunx#86L)], output=[ticker_id#84, max(db_tsunx)#99L])
+- Exchange hashpartitioning(ticker_id#84, 200)
+- *(1) HashAggregate(keys=[ticker_id#84], functions=[partial_max(db_tsunx#86L)], output=[ticker_id#84, max#109L])
+- *(1) Project [ticker_id#84, db_tsunx#86L]
+- *(1) FileScan parquet [db_tsunx#86L,ticker_id#84,ddate#85] Batched: true, Format: Parquet,
Location: InMemoryFileIndex[hdfs://hdpnn:9000/user/tickers/ticks.parquet],
PartitionCount: 6,
PartitionFilters: [isnotnull(ticker_id#84), (ticker_id#84 = 1)],
PushedFilters: [],
ReadSchema: struct<db_tsunx:bigint>
Compare 162 and 6 and PartitionFilters: [], PartitionFilters: [isnotnull(ticker_id#84), (ticker_id#84 = 1)],
比较 162 和 6 和 PartitionFilters: [], PartitionFilters: [isnotnull(ticker_id#84), (ticker_id#84 = 1)],
It means that filter action on data from DS and where go inside Spark and used for optimization.
这意味着对来自 DS 的数据进行过滤操作,并在 Spark 内部进行哪些操作并用于优化。
回答by Parthiv Gogree
just FYI,
只是FYI,
maxTsunx.filter(r => r.get(0) == 1)
maxTsunx.filter(r => r.get(0) == 1)
maxTsunx.where(col("ticker_id")===1)
maxTsunx.where(col("ticker_id")===1)
or
或者
maxTsunx.filter(col("ticker_id")===1)
maxTsunx.filter(col("ticker_id")===1)
In first case, passing function to filter function
在第一种情况下,将函数传递给过滤函数
In second case, passing condition expression (either string or column type) to filter or where function.
Physical plan 2 is also possible by replacing wherewith filter function.
在第二种情况下,将条件表达式(字符串或列类型)传递给过滤器或 where 函数。物理方案 2 也可以替换where为过滤器功能。

