Pandas 将字符串列和 NaN(浮点数)转换为整数,保持 NaN
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/40464033/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas converting column of strings and NaN (floats) to integers, keeping the NaN
提问by mik.ferrucci
I have problems in converting a column which contains both numbers of 2 digits in string format (type: str) and NaN (type: float64). I want to obtain a new column made this way: NaN where there was NaN and integer numbers where there was a number of 2 digits in string format. As an example: I want to obtain column Yearbirth2 from column YearBirth1 like this:
我在转换包含字符串格式(类型:str)和 NaN(类型:float64)的 2 位数的列时遇到问题。我想以这种方式获得一个新列:NaN,其中有 NaN 和整数,其中有字符串格式的 2 位数字。例如:我想从 YearBirth1 列中获取 Yearbirth2 列,如下所示:
YearBirth1 #numbers here are formatted as strings: type(YearBirth1[0])=str
34 # and NaN are floats: type(YearBirth1[2])=float64.
76
Nan
09
Nan
91
YearBirth2 #numbers here are formatted as integers: type(YearBirth2[0])=int
34 #NaN can remain floats as they were.
76
Nan
9
Nan
91
I have tried this:
我试过这个:
csv['YearBirth2'] = (csv['YearBirth1']).astype(int)
And as I expected i got this error:
正如我所料,我收到了这个错误:
ValueError: cannot convert float NaN to integer
So I tried this:
所以我试过这个:
csv['YearBirth2'] = (csv['YearBirth1']!=NaN).astype(int)
And got this error:
并得到这个错误:
NameError: name 'NaN' is not defined
Finally I have tried this:
最后我试过这个:
csv['YearBirth2'] = (csv['YearBirth1']!='NaN').astype(int)
NO error, but when I checked the column YearBirth2, this was the result:
没有错误,但是当我检查 YearBirth2 列时,结果如下:
YearBirth2:
1
1
1
1
1
1
Very bad.. I think the idea is right but there is a problem to make Python able to understand what I mean for NaN.. Or maybe the method I tried is wrong..
非常糟糕.. 我认为这个想法是正确的,但有一个问题让 Python 能够理解我对 NaN 的意思.. 或者我尝试的方法可能是错误的..
I also used pd.to_numeric() method, but this way i obtain floats, not integers..
我还使用了 pd.to_numeric() 方法,但这样我获得了浮点数,而不是整数..
Any help?! Thanks to everyone!
有什么帮助吗?!谢谢大家!
P.S: csv is the name of my DataFrame; Sorry if I am not so clear, I am on improving with English language!
PS:csv是我的DataFrame的名字;对不起,如果我不太清楚,我正在提高英语水平!
回答by jezrael
You can use to_numeric
, but is impossible get int
with NaN
values - they are always converted to float
: see na type promotions.
您可以使用to_numeric
,但无法int
使用NaN
值获取- 它们始终转换为float
:请参阅 na 类型促销。
df['YearBirth2'] = pd.to_numeric(df.YearBirth1, errors='coerce')
print (df)
YearBirth1 YearBirth2
0 34 34.0
1 76 76.0
2 Nan NaN
3 09 9.0
4 Nan NaN
5 91 91.0