pandas 熊猫经纬度到连续行之间的距离

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/40452759/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:21:54  来源:igfitidea点击:

Pandas Latitude-Longitude to distance between successive rows

pythonpandasnumpygeospatialhaversine

提问by edesz

I have the following in a Pandas DataFrame in Python 2.7:

我在 Python 2.7 的 Pandas DataFrame 中有以下内容:

Ser_Numb        LAT      LONG
       1  74.166061 30.512811
       2  72.249672 33.427724
       3  67.499828 37.937264
       4  84.253715 69.328767
       5  72.104828 33.823462
       6  63.989462 51.918173
       7  80.209112 33.530778
       8  68.954132 35.981256
       9  83.378214 40.619652
       10 68.778571 6.607066

I am looking to calculate the distance between successive rows in the dataframe. The output should look something like this:

我正在寻找计算数据帧中连续行之间的距离。输出应如下所示:

Ser_Numb          LAT        LONG   Distance
       1    74.166061   30.512811          0
       2    72.249672   33.427724          d_between_Ser_Numb2 and Ser_Numb1
       3    67.499828   37.937264          d_between_Ser_Numb3 and Ser_Numb2
       4    84.253715   69.328767          d_between_Ser_Numb4 and Ser_Numb3
       5    72.104828   33.823462          d_between_Ser_Numb5 and Ser_Numb4
       6    63.989462   51.918173          d_between_Ser_Numb6 and Ser_Numb5
       7    80.209112   33.530778   .
       8    68.954132   35.981256   .
       9    83.378214   40.619652   .
       10   68.778571   6.607066    .

Attempt

试图

This postlooks somewhat similar but it is calculating the distance between fixed points. I need the distance between successive points.

这篇文章看起来有些相似,但它正在计算固定点之间的距离。我需要连续点之间的距离。

I tried to adapt this as follows:

我尝试将其调整如下:

df['LAT_rad'], df['LON_rad'] = np.radians(df['LAT']), np.radians(df['LONG'])
df['dLON'] = df['LON_rad'] - np.radians(df['LON_rad'].shift(1))
df['dLAT'] = df['LAT_rad'] - np.radians(df['LAT_rad'].shift(1))
df['distance'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin(df['dLAT']/2)**2 + math.cos(df['LAT_rad'].astype(float).shift(-1)) * np.cos(df['LAT_rad']) * np.sin(df['dLON']/2)**2))

However, I get the following error:

但是,我收到以下错误:

Traceback (most recent call last):
  File "C:\Python27\test.py", line 115, in <module>
    df['distance'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin(df['dLAT']/2)**2 + math.cos(df['LAT_rad'].astype(float).shift(-1)) * np.cos(df['LAT_rad']) * np.sin(df['dLON']/2)**2))
  File "C:\Python27\lib\site-packages\pandas\core\series.py", line 78, in wrapper
    "{0}".format(str(converter)))
TypeError: cannot convert the series to <type 'float'>
[Finished in 2.3s with exit code 1]

This error was fixed from MaxU's comment. With the fix, the output of this calculation is not making sense - the distance is nearly 8000 km:

此错误已从 MaxU 的评论中修复。修复后,此计算的输出没有意义 - 距离接近 8000 公里:

   Ser_Numb        LAT       LONG   LAT_rad   LON_rad      dLON      dLAT     distance
0         1  74.166061  30.512811  1.294442  0.532549       NaN       NaN          NaN
1         2  72.249672  33.427724  1.260995  0.583424  0.574129  1.238402  8010.487211
2         3  67.499828  37.937264  1.178094  0.662130  0.651947  1.156086  7415.364469
3         4  84.253715  69.328767  1.470505  1.210015  1.198459  1.449943  9357.184623
4         5  72.104828  33.823462  1.258467  0.590331  0.569212  1.232802  7992.087820
5         6  63.989462  51.918173  1.116827  0.906143  0.895840  1.094862  7169.812123
6         7  80.209112  33.530778  1.399913  0.585222  0.569407  1.380421  8851.558260
7         8  68.954132  35.981256  1.203477  0.627991  0.617777  1.179044  7559.609520
8         9  83.378214  40.619652  1.455224  0.708947  0.697986  1.434220  9194.371978
9        10  68.778571   6.607066  1.200413  0.115315  0.102942  1.175014          NaN

According to:

根据:

  • this online calculator: If I use Latitude1 = 74.166061, Longitude1 = 30.512811, Latitude2 = 72.249672, Longitude2 = 33.427724 then I get 233 km
  • haversine function found hereas: print haversine(30.512811, 74.166061, 33.427724, 72.249672)then I get 232.55 km
  • 这个在线计算器:如果我使用 Latitude1 = 74.166061, Longitude1 = 30.512811, Latitude2 = 72.249672, Longitude2 = 33.427724 那么我得到 233 公里
  • 这里print haversine(30.512811, 74.166061, 33.427724, 72.249672)找到的半正弦函数 为:然后我得到 232.55 公里

The answer should be 233 km, but my approach is giving ~8000 km. I think there is something wrong with how I am trying to iterate between successive rows.

答案应该是 233 公里,但我的方法是给出 ~8000 公里。我认为我尝试在连续行之间进行迭代的方式有问题。

Question:Is there a way to do this in Pandas? Or do I need to loop through the dataframe one row at a time?

问题:有没有办法在 Pandas 中做到这一点?或者我是否需要一次遍历数据帧一行?

Additional Information:

附加信息:

To create the above DF, select it and copy to clipboard. Then:

要创建上述 DF,请选择它并复制到剪贴板。然后:

import pandas as pd
df = pd.read_clipboard()
print df

回答by MaxU

you can use this great solution (c) @derricw(don't forget to upvote it ;-):

你可以使用这个很棒的解决方案(c)@derricw(不要忘记给它点;-):

# vectorized haversine function
def haversine(lat1, lon1, lat2, lon2, to_radians=True, earth_radius=6371):
    """
    slightly modified version: of http://stackoverflow.com/a/29546836/2901002

    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees or in radians)

    All (lat, lon) coordinates must have numeric dtypes and be of equal length.

    """
    if to_radians:
        lat1, lon1, lat2, lon2 = np.radians([lat1, lon1, lat2, lon2])

    a = np.sin((lat2-lat1)/2.0)**2 + \
        np.cos(lat1) * np.cos(lat2) * np.sin((lon2-lon1)/2.0)**2

    return earth_radius * 2 * np.arcsin(np.sqrt(a))


df['dist'] = \
    haversine(df.LAT.shift(), df.LONG.shift(),
                 df.loc[1:, 'LAT'], df.loc[1:, 'LONG'])

Result:

结果:

In [566]: df
Out[566]:
   Ser_Numb        LAT       LONG         dist
0         1  74.166061  30.512811          NaN
1         2  72.249672  33.427724   232.549785
2         3  67.499828  37.937264   554.905446
3         4  84.253715  69.328767  1981.896491
4         5  72.104828  33.823462  1513.397997
5         6  63.989462  51.918173  1164.481327
6         7  80.209112  33.530778  1887.256899
7         8  68.954132  35.981256  1252.531365
8         9  83.378214  40.619652  1606.340727
9        10  68.778571   6.607066  1793.921854

UPDATE:this will help to understand the logic:

更新:这将有助于理解逻辑:

In [573]: pd.concat([df['LAT'].shift(), df.loc[1:, 'LAT']], axis=1, ignore_index=True)
Out[573]:
           0          1
0        NaN        NaN
1  74.166061  72.249672
2  72.249672  67.499828
3  67.499828  84.253715
4  84.253715  72.104828
5  72.104828  63.989462
6  63.989462  80.209112
7  80.209112  68.954132
8  68.954132  83.378214
9  83.378214  68.778571