Pandas:在 DataFrame 中创建聚合列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/13256917/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 20:29:09  来源:igfitidea点击:

Pandas: Creating aggregated column in DataFrame

pythonpandas

提问by foglerit

With the DataFrame below as an example,

以下面的DataFrame为例,

In [83]:
df = pd.DataFrame({'A':[1,1,2,2],'B':[1,2,1,2],'values':np.arange(10,30,5)})
df
Out[83]:
   A  B  values
0  1  1      10
1  1  2      15
2  2  1      20
3  2  2      25

What would be a simple way to generate a new column containing some aggregation of the data over one of the columns?

生成包含其中一列数据聚合的新列的简单方法是什么?

For example, if I sum valuesover items in A

例如,如果我values对中的项目求和A

In [84]:
df.groupby('A').sum()['values']
Out[84]:
A
1    25
2    45
Name: values

How can I get

我怎样才能得到

   A  B  values  sum_values_A
0  1  1      10            25
1  1  2      15            25
2  2  1      20            45
3  2  2      25            45

回答by Wouter Overmeire

In [20]: df = pd.DataFrame({'A':[1,1,2,2],'B':[1,2,1,2],'values':np.arange(10,30,5)})

In [21]: df
Out[21]:
   A  B  values
0  1  1      10
1  1  2      15
2  2  1      20
3  2  2      25

In [22]: df['sum_values_A'] = df.groupby('A')['values'].transform(np.sum)

In [23]: df
Out[23]:
   A  B  values  sum_values_A
0  1  1      10            25
1  1  2      15            25
2  2  1      20            45
3  2  2      25            45

回答by foglerit

I found a way using join:

我找到了一种使用方法join

In [101]:
aggregated = df.groupby('A').sum()['values']
aggregated.name = 'sum_values_A'
df.join(aggregated,on='A')

Out[101]:
   A  B  values  sum_values_A
0  1  1      10            25
1  1  2      15            25
2  2  1      20            45
3  2  2      25            45

Anyone has a simpler way to do it?

任何人都有更简单的方法来做到这一点?

回答by joaquin

This is not so direct but I found it very intuitive (the use of map to create new columns from another column) and can be applied to many other cases:

这不是那么直接,但我发现它非常直观(使用 map 从另一列创建新列)并且可以应用于许多其他情况:

gb = df.groupby('A').sum()['values']

def getvalue(x):
    return gb[x]

df['sum'] = df['A'].map(getvalue)
df

回答by Garrett

In [15]: def sum_col(df, col, new_col):
   ....:     df[new_col] = df[col].sum()
   ....:     return df

In [16]: df.groupby("A").apply(sum_col, 'values', 'sum_values_A')
Out[16]: 
   A  B  values  sum_values_A
0  1  1      10            25
1  1  2      15            25
2  2  1      20            45
3  2  2      25            45