Python Pandas:读取文件时如何跳过列?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/24366449/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python Pandas : How to skip columns when reading a file?
提问by jrjc
I have table formatted as follow :
我的表格格式如下:
foo - bar - 10 2e-5 0.0 some information
quz - baz - 4 1e-2 1 some other description in here
When I open it with pandas doing :
当我用熊猫打开它时:
a = pd.read_table("file", header=None, sep=" ")
It tells me :
它告诉我:
CParserError: Error tokenizing data. C error: Expected 9 fields in line 2, saw 12
What I'd basically like to have is something similar to the skiprows option which would allow me to do something like :
我基本上想要的是类似于 skiprows 选项的东西,它可以让我做类似的事情:
a = pd.read_table("file", header=None, sep=" ", skipcolumns=[8:])
I'm aware that I could re-format this table with awk
, but I'd like to known whether a Pandas solution exists or not.
我知道我可以用 重新格式化这个表awk
,但我想知道 Pandas 解决方案是否存在。
Thanks.
谢谢。
回答by otus
The usecols
parameter allows you to select which columns to use:
该usecols
参数允许您选择要使用的列:
a = pd.read_table("file", header=None, sep=" ", usecols=range(8))
However, to accept irregular column counts you need to also use engine='python'
.
但是,要接受不规则的列计数,您还需要使用engine='python'
.
回答by Martin Konecny
If you are using Linux/OS X/Windows Cygwin, you should be able to prepare the file as follows:
如果您使用的是 Linux/OS X/Windows Cygwin,您应该能够按如下方式准备文件:
cat your_file | cut -d' ' -f1,2,3,4,5,6,7 > out.file
Then in Python:
然后在 Python 中:
a = pd.read_table("out.file", header=None, sep=" ")
Example:
例子:
Input:
输入:
foo - bar - 10 2e-5 0.0 some information
quz - baz - 4 1e-2 1 some other description in here
Output:
输出:
foo - bar - 10 2e-5 0.0
quz - baz - 4 1e-2 1
You can run this command manually on the command-line, or simply call it from within Python using the subprocess
module.
您可以在命令行上手动运行此命令,也可以使用subprocess
模块从 Python 内部调用它。