使用 SqlAlchemy 和 cx_Oracle 将 Pandas DataFrame 写入 Oracle 数据库时加快 to_sql()
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42727990/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Speed up to_sql() when writing Pandas DataFrame to Oracle database using SqlAlchemy and cx_Oracle
提问by breezymri
Using pandas dataframe's to_sql method, I can write a small number of rows to a table in oracle database pretty easily:
使用 pandas 数据框的 to_sql 方法,我可以很容易地将少量行写入 oracle 数据库中的表中:
from sqlalchemy import create_engine
import cx_Oracle
dsn_tns = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<host>)(PORT=1521))\
(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=<servicename>)))"
pwd = input('Please type in password:')
engine = create_engine('oracle+cx_oracle://myusername:' + pwd + '@%s' % dsn_tns)
df.to_sql('test_table', engine.connect(), if_exists='replace')
But with any regular-sized dataframes (mine has 60k rows, not so big), the code became unusable as it never finished in the time I was willing to wait (definitely more than 10 min). I've googled and searched quite a few times and the closest solution was the answer given by ansonwin this question. But that one was about mysql, not oracle. As Ziggy Eunicienpointed out, it did not work for oracle. Any ideas?
但是对于任何常规大小的数据帧(我的有 60k 行,不是那么大),代码变得无法使用,因为它在我愿意等待的时间内从未完成(绝对超过 10 分钟)。我在谷歌上搜索了很多次,最接近的解决方案是ansonw在这个问题中给出的答案。但那是关于mysql,而不是oracle。正如Ziggy Eunicien指出的那样,它不适用于 oracle。有任何想法吗?
EDIT
编辑
Here's a sample of rows in the dataframe:
这是数据框中的行示例:
id name premium created_date init_p term_number uprate value score group action_reason
160442353 LDP: Review 1295.619617 2014-01-20 1130.75 1 7 -42 236.328243 6 pass
164623435 TRU: Referral 453.224880 2014-05-20 0.00 11 NaN -55 38.783290 1 suppress
and here is the data types for the df:
这是 df 的数据类型:
id int64
name object
premium float64
created_date object
init_p float64
term_number float64
uprate float64
value float64
score float64
group int64
action_reason object
回答by MaxU
Pandas + SQLAlchemy per default save all object
(string) columns as CLOBin Oracle DB, which makes insertion extremelyslow.
Pandas + SQLAlchemy 默认将所有object
(字符串)列保存为Oracle DB 中的CLOB,这使得插入非常缓慢。
Here are some tests:
以下是一些测试:
import pandas as pd
import cx_Oracle
from sqlalchemy import types, create_engine
#######################################################
### DB connection strings config
#######################################################
tns = """
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-db-scan)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = my_service_name)
)
)
"""
usr = "test"
pwd = "my_oracle_password"
engine = create_engine('oracle+cx_oracle://%s:%s@%s' % (usr, pwd, tns))
# sample DF [shape: `(2000, 11)`]
# i took your 2 rows DF and replicated it: `df = pd.concat([df]* 10**3, ignore_index=True)`
df = pd.read_csv('/path/to/file.csv')
DF info:
DF信息:
In [61]: df.shape
Out[61]: (2000, 11)
In [62]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 11 columns):
id 2000 non-null int64
name 2000 non-null object
premium 2000 non-null float64
created_date 2000 non-null datetime64[ns]
init_p 2000 non-null float64
term_number 2000 non-null int64
uprate 1000 non-null float64
value 2000 non-null int64
score 2000 non-null float64
group 2000 non-null int64
action_reason 2000 non-null object
dtypes: datetime64[ns](1), float64(4), int64(4), object(2)
memory usage: 172.0+ KB
Let's check how long will it take to store it to Oracle DB:
让我们检查将其存储到 Oracle DB 需要多长时间:
In [57]: df.shape
Out[57]: (2000, 11)
In [58]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace')
1 loop, best of 1: 16 s per loop
In Oracle DB (pay attention at CLOB's):
在 Oracle DB 中(注意 CLOB):
AAA> desc test.test_table
Name Null? Type
------------------------------- -------- ------------------
ID NUMBER(19)
NAME CLOB # !!!
PREMIUM FLOAT(126)
CREATED_DATE DATE
INIT_P FLOAT(126)
TERM_NUMBER NUMBER(19)
UPRATE FLOAT(126)
VALUE NUMBER(19)
SCORE FLOAT(126)
group NUMBER(19)
ACTION_REASON CLOB # !!!
Now let's instruct pandas to save all object
columns as VARCHAR data types:
现在让我们指示 pandas 将所有object
列保存为 VARCHAR 数据类型:
In [59]: dtyp = {c:types.VARCHAR(df[c].str.len().max())
...: for c in df.columns[df.dtypes == 'object'].tolist()}
...:
In [60]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp)
1 loop, best of 1: 335 ms per loop
This time it was approx. 48 times faster
这次是大约。快 48 倍
Check in Oracle DB:
签入 Oracle 数据库:
AAA> desc test.test_table
Name Null? Type
----------------------------- -------- ---------------------
ID NUMBER(19)
NAME VARCHAR2(13 CHAR) # !!!
PREMIUM FLOAT(126)
CREATED_DATE DATE
INIT_P FLOAT(126)
TERM_NUMBER NUMBER(19)
UPRATE FLOAT(126)
VALUE NUMBER(19)
SCORE FLOAT(126)
group NUMBER(19)
ACTION_REASON VARCHAR2(8 CHAR) # !!!
Let's test it with 200.000 rows DF:
让我们用 200.000 行 DF 测试它:
In [69]: df.shape
Out[69]: (200000, 11)
In [70]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp, chunksize=10**4)
1 loop, best of 1: 4.68 s per loop
It took ~5 seconds for 200K rows DF in my test (not the fastest) environment.
在我的测试(不是最快的)环境中,200K 行 DF 花费了大约 5 秒。
Conclusion:use the following trick in order to explicitly specify dtype
for all DF columns of object
dtype when saving DataFrames to Oracle DB. Otherwise it'll be saved as CLOB data type, which requires special treatment and makes it very slow
结论:在将 DataFrames 保存到 Oracle DB 时,使用以下技巧来明确指定dtype 的dtype
所有 DF 列object
。否则会保存为CLOB数据类型,需要特殊处理,速度很慢
dtyp = {c:types.VARCHAR(df[c].str.len().max())
for c in df.columns[df.dtypes == 'object'].tolist()}
df.to_sql(..., dtype=dtyp)