Pandas Python:连接具有相同列的数据帧

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/52204115/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 06:00:25  来源:igfitidea点击:

Pandas Python: Concatenate dataframes having same columns

pythonpandasconcatenation

提问by GeoSal

I have 3 dataframes having the same column names as each other. Say :

我有 3 个具有相同列名的数据框。说 :

df1
column1   column2   column3
a         b         c
d         e         f


df2
column1   column2   column3
g         h         i
j         k         l


df3
column1   column2   column3
m         n         o
p         q         r

Each dataframe has different values but the same columns. I tried append and concat, as well as merge outer but had errors. Here's what I tried:

每个数据框具有不同的值但具有相同的列。我尝试了 append 和 concat,以及合并外部,但有错误。这是我尝试过的:

df_final = df1.append(df2, sort=True,ignore_index=True).append2(df3, sort=True,ignore_index=True)

df_final = df1.append(df2, sort=True,ignore_index=True).append2(df3, sort=True,ignore_index=True)

I also tried: df_final = pd.concat([df1, df2, df3], axis=1)

我也试过: df_final = pd.concat([df1, df2, df3], axis=1)

But I get this error: AssertionError: Number of manager items must equal union of block items# manager items: 61, # tot_items: 62

但我收到此错误: AssertionError: Number of manager items must equal union of block items# manager items: 61, # tot_items: 62

I've googled the error but I can't seem to understand why it's happening in my case. Any guidance is much appreciated!

我在谷歌上搜索了错误,但我似乎无法理解为什么会在我的情况下发生。非常感谢任何指导!

回答by jezrael

I think there is problem with duplicated columns names in some or all DataFrames.

我认为某些或所有 DataFrame 中存在重复的列名问题。

#simulate error
df1.columns = ['column3','column1','column1']
df2.columns = ['column5','column1','column1']
df3.columns = ['column2','column1','column1']

df_final = pd.concat([df1, df2, df3])

AssertionError: Number of manager items must equal union of block items # manager items: 4, # tot_items: 5

断言错误:管理器项目的数量必须等于块项目的并集#管理器项目:4,#tot_items:5

You can find duplicated columns names:

您可以找到重复的列名称:

print (df3.columns[df3.columns.duplicated(keep=False)])
Index(['column1', 'column1'], dtype='object')


Possible solutions is set columns names by list:

可能的解决方案是按列表设置列名:

df3.columns = ['column1','column2','column3']
print (df3)
  column1 column2 column3
0       m       n       o
1       p       q       r

Or remove duplicated columns with dupe names:

或者删除重复名称的重复列:

df31 = df3.loc[:, ~df3.columns.duplicated()]
print (df31)
  column2 column1
0       m       n
1       p       q

Then concator appendshould working nice.

然后concatappend应该工作得很好。

回答by mad_

Try without providing axis example:

尝试不提供轴示例:

import pandas as pd
mydict1 = {'column1' : ['a','d'],
          'column2' : ['b','e'],
          'column3' : ['c','f']}
mydict2 = {'column1' : ['g','j'],
          'column2' : ['h','k'],
          'column3' : ['i','i']}
mydict3= {"column1":['m','p'],
          "column2":['n','q'],
          "column3":['o','r']}
df1=pd.DataFrame(mydict1)
df2=pd.DataFrame(mydict2)
df3=pd.DataFrame(mydict3)

pd.concat([df1,df2,df3],ignore_index=True)

Output

输出

     column1    column2    column3
0      a           b         c
1      d           e         f
0      g           h         i
1      j           k         i
0      m           n         o
1      p           q         r

回答by CSMaverick

You can remove axis=1in your code

您可以axis=1在代码中删除

import pandas as pd
a = {"column1":['a','d'],
     "column2":['b','e'],
     "column3":['c','f']}
b = {"column1":['g','j'],
     "column2":['h','k'],
     "column3":['i','l']}

c = {"column1":['m','p'],
      "column2":['n','q'],
      "column3":['o','r']}


df1 = pd.DataFrame(a)
df2 = pd.DataFrame(b)
df3 = pd.DataFrame(c)

df_final = pd.concat([df1, df2, df3]) #.reset_index()
print(df_final)

#output
    column1 column2 column3
0       a       b       c
1       d       e       f
0       g       h       i
1       j       k       l
0       m       n       o
1       p       q       r