Python 删除熊猫中数据帧的前三行
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/16396903/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Delete the first three rows of a dataframe in pandas
提问by Nilani Algiriyage
I need to delete the first three rows of a dataframe in pandas.
我需要删除熊猫中数据帧的前三行。
I know df.ix[:-1]would remove the last row, but I can't figure out how to remove first n rows.
我知道df.ix[:-1]会删除最后一行,但我不知道如何删除前 n 行。
采纳答案by bdiamante
回答by beardc
You can use python slicing, but note it's not in-place.
您可以使用 python 切片,但请注意它不是就地的。
In [15]: import pandas as pd
In [16]: import numpy as np
In [17]: df = pd.DataFrame(np.random.random((5,2)))
In [18]: df
Out[18]:
0 1
0 0.294077 0.229471
1 0.949007 0.790340
2 0.039961 0.720277
3 0.401468 0.803777
4 0.539951 0.763267
In [19]: df[3:]
Out[19]:
0 1
3 0.401468 0.803777
4 0.539951 0.763267
回答by drexiya
I think a more explicit way of doing this is to use drop.
我认为这样做的更明确的方法是使用 drop。
The syntax is:
语法是:
df.drop(label)
And as pointed out by @tim and @ChaimG, this can be done in-place:
正如@tim 和@ChaimG 所指出的,这可以就地完成:
df.drop(label, inplace=True)
One way of implementing this could be:
实现这一点的一种方法可能是:
df.drop(df.index[:3], inplace=True)
And another "in place" use:
另一个“就地”使用:
df.drop(df.head(3).index, inplace=True)
回答by 176coding
df = df.iloc[n:]
n drops the first n rows.
n 删除前 n 行。
回答by Anupam khare
df.drop(df.index[[0,2]])
Pandas uses zero based numbering, so 0 is the first row, 1 is the second row and 2 is the third row.
Pandas 使用从零开始的编号,因此 0 是第一行,1 是第二行,2 是第三行。
回答by mxia
A simple way is to use tail(-n) to remove the first n rows
一个简单的方法是使用 tail(-n) 删除前 n 行
df=df.tail(-3)
df=df.tail(-3)
回答by Rahul kuchhadia
inp0= pd.read_csv("bank_marketing_updated_v1.csv",skiprows=2)
inp0= pd.read_csv("bank_marketing_updated_v1.csv",skiprows=2)
or if you want to do in existing dataframe
或者如果你想在现有的数据框中做
simply do following command
只需执行以下命令

