如何从python中的数组(或矩阵)中提取除一列以外的所有列?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/24027040/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 03:51:15  来源:igfitidea点击:

How to extract all columns but one from an array (or matrix) in python?

pythonarraysnumpymatrix

提问by Ferdinando Randisi

Given a numpy 2d array (or a matrix), I would like to extract all the columns but the i-th.

给定一个 numpy 二维数组(或矩阵),我想提取除第 i 列之外的所有列。

E. g. from

例如 从

1 2 3 4
2 4 6 8
3 6 9 12

I would like to have, e.g.

我想要,例如

1 2 3
2 4 6
3 6 9

or

或者

1 2 4
2 4 8
3 6 12

I cannot find a pythonic way to do this. I now that you can extract given columns by simply

我找不到一种pythonic的方法来做到这一点。我现在可以简单地提取给定的列

a[:,n]

or

或者

a[:,[n,n+1,n+5]]

But what about extracting all of them but one?

但是除了一个之外,提取所有这些呢?

采纳答案by Jaime

Since for the general case you are going to be returning a copy anyway, you may find yourself producing more readable code by using np.delete:

由于在一般情况下,您无论如何都会返回副本,因此您可能会发现自己使用np.delete以下方法生成了更具可读性的代码:

>>> a = np.arange(12).reshape(3, 4)
>>> np.delete(a, 2, axis=1)
array([[ 0,  1,  3],
       [ 4,  5,  7],
       [ 8,  9, 11]])

回答by Peter Gibson

Take a look at numpy's advanced slicing

看看numpy的高级切片

>>> import numpy as np
>>> a = np.array([[1,2,3,4], [2,4,6,8], [3,6,9,12]])
>>> a[:,np.array([True, True, False, True])]
array([[ 1,  2,  4],
       [ 2,  4,  8],
       [ 3,  6, 12]])

回答by chrisb

Use a slice that excludes the last element.

使用排除最后一个元素的切片。

In [19]: a[:,:-1]
Out[19]: 
array([[1, 2, 3],
       [2, 4, 6],
       [3, 6, 9]])

If you want something other than the last element I'd just build a list to select with.

如果你想要的不是最后一个元素,我只需要建立一个列表来选择。

In [20]: selector = [x for x in range(a.shape[1]) if x != 2]
In [21]: a[:, selector]
Out[21]: 
array([[ 1,  2,  4],
       [ 2,  4,  8],
       [ 3,  6, 12]])

http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

回答by Nathan

The answers given already can easily be adapted to selecting all but a list of columns, but here are a couple of explicit examples:

已经给出的答案可以很容易地适用于选择除列列表之外的所有列,但这里有几个明确的例子:

In [1]: import numpy as np
In [2]: a = np.arange(12).reshape(3, 4)
In [3]: a
Out[3]:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
In [4]: drop_cols = [0, 3]

# option 1: delete the columns you don't want (like @Jaime)
# (this is really the most straightforward)

In [5]: np.delete(a, drop_cols, axis=1)
Out[5]:
array([[ 1,  2],
       [ 5,  6],
       [ 9, 10]])

# option 2: pass the indices of columns to keep (like @chrisb)

In [6]: a[:, [i for i in range(a.shape[1]) if i not in drop_cols]]
Out[6]:
array([[ 1,  2],
       [ 5,  6],
       [ 9, 10]])

# option 3: use an array of T/F for each col (like @Peter Gibson)

In [7]: a[:, [i not in drop_cols for i in range(a.shape[1])]]
Out[7]:
array([[ 1,  2],
       [ 5,  6],
       [ 9, 10]])