Python 转换熊猫数据框中的分类数据
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/32011359/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Convert categorical data in pandas dataframe
提问by Gilaztdinov Rustam
I have a dataframe with this type of data (too many columns):
我有一个包含此类数据的数据框(列太多):
col1 int64
col2 int64
col3 category
col4 category
col5 category
Columns seems like this:
列看起来像这样:
Name: col3, dtype: category
Categories (8, object): [B, C, E, G, H, N, S, W]
I want to convert all value in columns to integer like this:
我想将列中的所有值转换为整数,如下所示:
[1, 2, 3, 4, 5, 6, 7, 8]
I solved this for one column by this:
我通过这个为一列解决了这个问题:
dataframe['c'] = pandas.Categorical.from_array(dataframe.col3).codes
Now I have two columns in my dataframe - old col3
and new c
and need to drop old columns.
现在我的数据框中有两列 - 旧列col3
和新c
列,需要删除旧列。
That's bad practice. It's work but in my dataframe many columns and I don't want do it manually.
这是不好的做法。它可以工作,但在我的数据框中有很多列,我不想手动完成。
How do this pythonic and just cleverly?
这个pythonic如何巧妙地做到这一点?
采纳答案by joris
First, to convert a Categorical column to its numerical codes, you can do this easier with: dataframe['c'].cat.codes
.
Further, it is possible to select automatically all columns with a certain dtype in a dataframe using select_dtypes
. This way, you can apply above operation on multiple and automatically selected columns.
首先,以一个绝对列转换为它的数字代码,你可以这样做更容易:dataframe['c'].cat.codes
。
此外,可以使用select_dtypes
. 这样,您可以对多个自动选择的列应用上述操作。
First making an example dataframe:
首先制作一个示例数据框:
In [75]: df = pd.DataFrame({'col1':[1,2,3,4,5], 'col2':list('abcab'), 'col3':list('ababb')})
In [76]: df['col2'] = df['col2'].astype('category')
In [77]: df['col3'] = df['col3'].astype('category')
In [78]: df.dtypes
Out[78]:
col1 int64
col2 category
col3 category
dtype: object
Then by using select_dtypes
to select the columns, and then applying .cat.codes
on each of these columns, you can get the following result:
然后通过使用select_dtypes
选择列,然后应用.cat.codes
到这些列中的每一列,您可以得到以下结果:
In [80]: cat_columns = df.select_dtypes(['category']).columns
In [81]: cat_columns
Out[81]: Index([u'col2', u'col3'], dtype='object')
In [83]: df[cat_columns] = df[cat_columns].apply(lambda x: x.cat.codes)
In [84]: df
Out[84]:
col1 col2 col3
0 1 0 0
1 2 1 1
2 3 2 0
3 4 0 1
4 5 1 1
回答by Abhishek
If your concern was only that you making a extra column and deleting it later, just dun use a new column at the first place.
如果您只是担心创建一个额外的列并稍后删除它,那么首先不要使用新列。
dataframe = pd.DataFrame({'col1':[1,2,3,4,5], 'col2':list('abcab'), 'col3':list('ababb')})
dataframe.col3 = pd.Categorical.from_array(dataframe.col3).codes
You are done. Now as Categorical.from_array
is deprecated, use Categorical
directly
你完成了。现在Categorical.from_array
已弃用,Categorical
直接使用
dataframe.col3 = pd.Categorical(dataframe.col3).codes
If you also need the mapping back from index to label, there is even better way for the same
如果您还需要从索引到标签的映射,还有更好的方法
dataframe.col3, mapping_index = pd.Series(dataframe.col3).factorize()
check below
检查下面
print(dataframe)
print(mapping_index.get_loc("c"))
回答by Prohadoopian
@Quickbeam2k1 ,see below -
@Quickbeam2k1,见下文-
dataset=pd.read_csv('Data2.csv')
np.set_printoptions(threshold=np.nan)
X = dataset.iloc[:,:].values
Using sklearn
使用 sklearn
from sklearn.preprocessing import LabelEncoder
labelencoder_X=LabelEncoder()
X[:,0] = labelencoder_X.fit_transform(X[:,0])
回答by scottlittle
This works for me:
这对我有用:
pandas.factorize( ['B', 'C', 'D', 'B'] )[0]
Output:
输出:
[0, 1, 2, 0]
回答by shantanu pathak
Here multiple columns need to be converted. So, one approach i used is ..
这里需要转换多列。所以,我使用的一种方法是..
for col_name in df.columns:
if(df[col_name].dtype == 'object'):
df[col_name]= df[col_name].astype('category')
df[col_name] = df[col_name].cat.codes
This converts all string / object type columns to categorical. Then applies codes to each type of category.
这会将所有字符串/对象类型列转换为分类列。然后将代码应用于每种类型的类别。
回答by Fatemeh Asgarinejad
For converting categorical data in column Cof dataset data, we need to do the following:
为了转换数据集data 的C列中的分类数据,我们需要执行以下操作:
from sklearn.preprocessing import LabelEncoder
labelencoder= LabelEncoder() #initializing an object of class LabelEncoder
data['C'] = labelencoder.fit_transform(data['C']) #fitting and transforming the desired categorical column.
回答by SaTa
For a certain column, if you don't care about the ordering, use this
对于某个列,如果您不关心排序,请使用此
df['col1_num'] = df['col1'].apply(lambda x: np.where(df['col1'].unique()==x)[0][0])
If you care about the ordering, specify them as a list and use this
如果您关心顺序,请将它们指定为列表并使用它
df['col1_num'] = df['col1'].apply(lambda x: ['first', 'second', 'third'].index(x))