Pandas 映射到 TRUE/FALSE 作为字符串,而不是布尔值

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/42788713/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:11:17  来源:igfitidea点击:

Pandas mapping to TRUE/FALSE as String, not Boolean

pythonpandasdictionaryreplace

提问by Dendrobates

When I try to convert some columns in a pandas dataframe from '0' and '1' to 'TRUE' and 'FALSE', pandas automatically detects dtype as boolean. I want to keep dtype as string, with the strings 'TRUE' and 'FALSE'.

当我尝试将 pandas 数据框中的某些列从“0”和“1”转换为“TRUE”和“FALSE”时,pandas 会自动将 dtype 检测为布尔值。我想将 dtype 保留为字符串,字符串为“TRUE”和“FALSE”。

See code below:

见下面的代码:

booleanColumns = pandasDF.select_dtypes(include=[bool]).columns.values.tolist()
booleanDictionary = {'1': 'TRUE', '0': 'FALSE'}

pandasDF.to_string(columns = booleanColumns)

for column in booleanColumns:
    pandasDF[column].map(booleanDictionary)

Unfortunately, python automatically converts dtype to boolean with the last operation. How can I prevent this?

不幸的是,python 会在最后一次操作中自动将 dtype 转换为 boolean。我怎样才能防止这种情况?

回答by jezrael

If need replace booleanvalues Trueand False:

如果需要替换booleanTrueFalse

booleandf = pandasDF.select_dtypes(include=[bool])
booleanDictionary = {True: 'TRUE', False: 'FALSE'}

for column in booleandf:
    pandasDF[column] = pandasDF[column].map(booleanDictionary)

Sample:

样本:

pandasDF = pd.DataFrame({'A':[True,False,True],
                   'B':[4,5,6],
                   'C':[False,True,False]})

print (pandasDF)
       A  B      C
0   True  4  False
1  False  5   True
2   True  6  False

booleandf = pandasDF.select_dtypes(include=[bool])
booleanDictionary = {True: 'TRUE', False: 'FALSE'}

#loop by df is loop by columns, same as for column in booleandf.columns:
for column in booleandf:
    pandasDF[column] = pandasDF[column].map(booleanDictionary)

print (pandasDF)
       A  B      C
0   TRUE  4  FALSE
1  FALSE  5   TRUE
2   TRUE  6  FALSE

EDIT:

编辑:

Simplier solution with replaceby dict:

使用replaceby 更简单的解决方案dict

booleanDictionary = {True: 'TRUE', False: 'FALSE'}
pandasDF = pandasDF.replace(booleanDictionary)
print (pandasDF)
       A  B      C
0   TRUE  4  FALSE
1  FALSE  5   TRUE
2   TRUE  6  FALSE