Python Pandas:将类别转换为数字
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/38088652/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas: convert categories to numbers
提问by sachinruk
Suppose I have a dataframe with countries that goes as:
假设我有一个包含以下国家/地区的数据框:
cc | temp
US | 37.0
CA | 12.0
US | 35.0
AU | 20.0
I know that there is a pd.get_dummies function to convert the countries to 'one-hot encodings'. However, I wish to convert them to indices instead such that I will get cc_index = [1,2,1,3]
instead.
我知道有一个 pd.get_dummies 函数可以将国家/地区转换为“one-hot encodings”。但是,我希望将它们转换为索引,这样我就会得到cc_index = [1,2,1,3]
。
I'm assuming that there is a faster way than using the get_dummies along with a numpy where clause as shown below:
我假设有比使用 get_dummies 和 numpy where 子句更快的方法,如下所示:
[np.where(x) for x in df.cc.get_dummies().values]
[np.where(x) for x in df.cc.get_dummies().values]
This is somewhat easier to do in R using 'factors' so I'm hoping pandas has something similar.
在 R 中使用“因子”更容易做到这一点,所以我希望熊猫有类似的东西。
回答by John Zwinck
First, change the type of the column:
首先,更改列的类型:
df.cc = pd.Categorical(df.cc)
Now the data look similar but are stored categorically. To capture the category codes:
现在数据看起来很相似,但是是分类存储的。要捕获类别代码:
df['code'] = df.cc.cat.codes
Now you have:
现在你有:
cc temp code
0 US 37.0 2
1 CA 12.0 1
2 US 35.0 2
3 AU 20.0 0
If you don't want to modify your DataFrame but simply get the codes:
如果您不想修改 DataFrame 而只是获取代码:
df.cc.astype('category').cat.codes
Or use the categorical column as an index:
或者使用分类列作为索引:
df2 = pd.DataFrame(df.temp)
df2.index = pd.CategoricalIndex(df.cc)
回答by jpp
If you wish only to transform your series into integer identifiers, you can use pd.factorize
.
如果您只想将系列转换为整数标识符,则可以使用pd.factorize
.
Note this solution, unlike pd.Categorical
, will not sort alphabetically. So the first country will be assigned 0
. If you wish to start from 1
, you can add a constant:
请注意,此解决方案与 不同pd.Categorical
,不会按字母顺序排序。所以第一个国家将被分配0
。如果你想从 开始1
,你可以添加一个常量:
df['code'] = pd.factorize(df['cc'])[0] + 1
print(df)
cc temp code
0 US 37.0 1
1 CA 12.0 2
2 US 35.0 1
3 AU 20.0 3
If you wish to sort alphabetically, specify sort=True
:
如果您希望按字母顺序排序,请指定sort=True
:
df['code'] = pd.factorize(df['cc'], sort=True)[0] + 1
回答by jpp
If you are using the sklearn
library you can use LabelEncoder
. Like pd.Categorical
, input strings are sorted alphabetically before encoding.
如果您正在使用该sklearn
库,则可以使用LabelEncoder
. 像 一样pd.Categorical
,输入字符串在编码之前按字母顺序排序。
from sklearn.preprocessing import LabelEncoder
LE = LabelEncoder()
df['code'] = LE.fit_transform(df['cc'])
print(df)
cc temp code
0 US 37.0 2
1 CA 12.0 1
2 US 35.0 2
3 AU 20.0 0
回答by Palepalli Surendra Reddy
Try this, convert to number based on frequency (high frequency - high number):
试试这个,转换为基于频率的数字(高频 - 高数字):
labels = df[col].value_counts(ascending=True).index.tolist()
codes = range(1,len(labels)+1)
df[col].replace(labels,codes,inplace=True)
回答by Denis Kalyan
Will change any columns into Numbers. It will not create a new column but just replace the values with numerical data.
将任何列更改为数字。它不会创建新列,而只是用数字数据替换值。
def characters_to_numb(*args):
for arg in args:
df[arg] = pd.Categorical(df[arg])
df[arg] = df[arg].cat.codes
return df
def characters_to_numb(*args):
for arg in args:
df[arg] = pd.Categorical(df[arg])
df[arg] = df[arg].cat.codes
return df
回答by Piotro
One-line code:
一行代码:
df[['cc']] = df[['cc']].apply(lambda col:pd.Categorical(col).codes)
This works also if you have a list_of_columns
:
如果您有list_of_columns
:
df[list_of_columns] = df[list_of_columns].apply(lambda col:pd.Categorical(col).codes)
Furthermore, if you want to keep your NaN
values you can apply a replace:
此外,如果您想保留您的NaN
值,您可以应用替换:
df[['cc']] = df[['cc']].apply(lambda col:pd.Categorical(col).codes).replace(-1,np.nan)