Python 来自 Pandas 数据帧的具有不同大小、标记和颜色的散点图
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30313882/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Scatterplot with different size, marker, and color from pandas dataframe
提问by Kexin Xu
I am trying to do a scatter plot with speed over meters for each point where marker indicate different types, size indicate different weights and color indicate how old a point is over 10 minutes scale. However, I was only able to plot by size so far.
我正在尝试为每个点绘制速度超过米的散点图,其中标记表示不同的类型,大小表示不同的权重,颜色表示一个点超过 10 分钟的规模。但是,到目前为止,我只能按大小进行绘图。
Any help is highly appreciated.
任何帮助都受到高度赞赏。
x = {'speed': [10, 15, 20, 18, 19], 'meters' : [122, 150, 190, 230, 300], 'type': ['phone', 'phone', 'gps', 'gps', 'car'], 'weight': [0.2, 0.3, 0.1, 0.85, 0.0], 'old': [1, 2, 4, 5, 8]}
m = pd.DataFrame(x)
plt.scatter(m.meters, m.speed, s = 30* m.weight)
mkr_dict = {'gps': 'x', 'phone': '+', 'car': 'o'}
meters speed type weight old
0 122 10 phone 0.20 1
1 150 15 phone 0.30 2
2 190 20 gps 0.10 4
3 230 18 gps 0.85 5
4 300 19 car 0.00 8
Updated question:
更新的问题:
I am trying to add colorbar to the color scale based on old. it worked when I plot against the entire dataset but failed after trying to add marker for each subset. Any idea?
我正在尝试将颜色条添加到基于旧的色标中。当我针对整个数据集进行绘图时它起作用,但在尝试为每个子集添加标记后失败。任何的想法?
plt.scatter(m.meters, m.speed, s = 30* m.weight, c=m.old)
cbar = plt.colorbar(ticks = [0, 5, 10])
cbar.ax.set_yticklabels(['New','5mins', '10mins'])
TypeError: You must first set_array for mappable
类型错误:您必须先为可映射设置 set_array
采纳答案by cphlewis
scatter
can only do one kind of marker at a time, so you have to plot the different types separately. Fortunately pandas makes this easy:
scatter
一次只能做一种标记,所以你必须分别绘制不同的类型。幸运的是,pandas 让这一切变得简单:
import matplotlib.pyplot as plt
import pandas as pd
x = {'speed': [10, 15, 20, 18, 19],
'meters' : [122, 150, 190, 230, 300],
'type': ['phone', 'phone', 'gps', 'gps', 'car'],
'weight': [0.2, 0.3, 0.1, 0.85, 0.0],
'old': [1, 2, 4, 5, 8]}
m = pd.DataFrame(x)
mkr_dict = {'gps': 'x', 'phone': '+', 'car': 'o'}
for kind in mkr_dict:
d = m[m.type==kind]
plt.scatter(d.meters, d.speed,
s = 100* d.weight,
c = d.old,
marker = mkr_dict[kind])
plt.show()
.... Where's the car? Well, the weight is 0.0 in the original test data, and we're using weight for marker-size, so: can't see it.
……车呢?嗯,原始测试数据中的权重是 0.0,我们使用权重作为标记大小,所以:看不到它。
回答by xnx
If you have just a few points, as here, you can pass a list of floats to the c
argument:
如果您只有几点,如这里,您可以将浮点数列表传递给c
参数:
colors = ['r', 'b', 'k', 'g', 'm']
plt.scatter(m.meters, m.speed, s=30*m.weight, vmin=0, vmax=10, cmap=cm)
to have your points coloured in the order given. Alternatively, to use a colormap:
按照给定的顺序对您的点进行着色。或者,要使用颜色图:
cm = plt.cm.get_cmap('hot') # or your colormap of choice
plt.scatter(m.meters, m.speed, s=30*m.weight, c=m.old, cmap=cm)
To change the marker shapes, you either need to add your own Patch
es, or add one point at a time: e.g.
要更改标记形状,您需要添加自己的Patch
es,或者一次添加一个点:例如
markers = ['^', 'o', 'v', 's', 'd']
for px, py, c, s, t in zip(m.meters, m.speed, m.old, m.weight, markers):
plt.scatter(px, py, marker=t, c=cm(c/10.), vmin=0, vmax=10, s=400*s+100)
plt.show()
(I've scaled the m.weight
to a different range to see the 5th point, which would otherwise have size 0.0).
(我已将 缩放m.weight
到不同的范围以查看第 5 个点,否则该点的大小为 0.0)。