Python 使用 Sklearn 的 TfidfVectorizer 变换
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/20132070/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Using Sklearn's TfidfVectorizer transform
提问by Sterling
I am trying to get the tf-idf vector for a single document using Sklearn's TfidfVectorizer object. I create a vocabulary based on some training documents and use fit_transform to train the TfidfVectorizer. Then, I want to find the tf-idf vectors for any given testing document.
我正在尝试使用 Sklearn 的 TfidfVectorizer 对象获取单个文档的 tf-idf 向量。我根据一些训练文档创建了一个词汇表,并使用 fit_transform 来训练 TfidfVectorizer。然后,我想为任何给定的测试文档找到 tf-idf 向量。
from sklearn.feature_extraction.text import TfidfVectorizer
self.vocabulary = "a list of words I want to look for in the documents".split()
self.vect = TfidfVectorizer(sublinear_tf=True, max_df=0.5, analyzer='word',
stop_words='english')
self.vect.fit_transform(self.vocabulary)
...
doc = "some string I want to get tf-idf vector for"
tfidf = self.vect.transform(doc)
The problem is that this returns a matrix with n rows where n is the size of my doc string. I want it to return just a single vector representing the tf-idf for the entire string. How can I make this see the string as a single document, rather than each character being a document? Also, I am very new to text mining so if I am doing something wrong conceptually, that would be great to know. Any help is appreciated.
问题是这会返回一个包含 n 行的矩阵,其中 n 是我的文档字符串的大小。我希望它只返回一个表示整个字符串的 tf-idf 的向量。我如何才能将字符串视为单个文档,而不是每个字符都是一个文档?另外,我对文本挖掘很陌生,所以如果我在概念上做错了什么,那会很高兴知道。任何帮助表示赞赏。
采纳答案by alko
If you want to compute tf-idf only for a given vocabulary, use vocabularyargument to TfidfVectorizerconstructor,
如果您只想为给定的词汇计算 tf-idf,请使用构造函数的vocabulary参数TfidfVectorizer,
vocabulary = "a list of words I want to look for in the documents".split()
vect = TfidfVectorizer(sublinear_tf=True, max_df=0.5, analyzer='word',
stop_words='english', vocabulary=vocabulary)
Then, to fit, i.e. calculate counts, with a given corpus, i.e. an iterable of documents, use fit:
然后,为了拟合,即计算计数,使用给定的corpus,即可迭代的文档,使用fit:
vect.fit(corpus)
Method fit_transformis a shortening for
方法fit_transform是缩短
vect.fit(corpus)
corpus_tf_idf = vect.transform(corpus)
Last, transformmethod accepts a corpus, so for a single document, you should pass it as list, or it is treated as iterable of symbols, each symbol being a document.
最后,transform方法接受一个语料库,因此对于单个文档,您应该将其作为列表传递,或者将其视为可迭代的符号,每个符号都是一个文档。
doc_tfidf = vect.transform([doc])

