Python/pyspark 数据框重新排列列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/42912156/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 22:15:35  来源:igfitidea点击:

Python/pyspark data frame rearrange columns

pythonpysparkspark-dataframe

提问by User12345

I have a data frame in python/pyspark with columns idtimecityzipand so on......

我在 python/pyspark 中有一个带有列idtimecityzip等的数据框......

Now I added a new column nameto this data frame.

现在我name向这个数据框中添加了一个新列。

Now I have to arrange the columns in such a way that the namecolumn comes after id

现在,我必须安排这样的列的name列来后id

I have done like below

我做了如下

change_cols = ['id', 'name']

cols = ([col for col in change_cols if col in df] 
        + [col for col in df if col not in change_cols])

df = df[cols]

I am getting this error

我收到此错误

pyspark.sql.utils.AnalysisException: u"Reference 'id' is ambiguous, could be: id#609, id#1224.;"

Why is this error occuring. How can I rectify this.

为什么会出现这个错误。我该如何纠正这一点。

回答by Alex

You can use selectto change the order of the columns:

您可以使用select来更改列的顺序:

df.select("id","name","time","city")

回答by melchtheitroad55

If you're working with a large number of columns:

如果您正在处理大量列:

df.select(sorted(df.columns))