pandas 为 DataFrame 中的每个组枚举每一行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/17228215/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 20:56:28  来源:igfitidea点击:

Enumerate each row for each group in a DataFrame

pythonpandas

提问by Greg Reda

In pandas, how can I add a new column which enumerates rows based on a given grouping?

在 Pandas 中,如何添加一个新列来枚举基于给定分组的行?

For instance, assume the following DataFrame:

例如,假设以下 DataFrame:

import pandas as pd
import numpy as np

a_list = ['A', 'B', 'C', 'A', 'A', 'C', 'B', 'B', 'A', 'C']
df = pd.DataFrame({'col_a': a_list, 'col_b': range(10)})
df
  col_a  col_b
0     A      0
1     B      1
2     C      2
3     A      3
4     A      4
5     C      5
6     B      6
7     B      7
8     A      8
9     C      9

I'd like to add a col_cthat gives me the Nth row of the "group" based on a grouping of col_aand sorting of col_b.

我想补充一个col_c,让我根据分组的“组”的第N行col_a和排序col_b

Desired output:

期望的输出:

  col_a  col_b  col_c
0     A      0      1
3     A      3      2
4     A      4      3
8     A      8      4
1     B      1      1
6     B      6      2
7     B      7      3
2     C      2      1
5     C      5      2
9     C      9      3

I'm struggling to get to col_c. You can get to the proper grouping and sorting with .sort_index(by=['col_a', 'col_b']), it's now a matter of getting to that new column and labeling each row.

我正在努力到达col_c. 您可以使用 进行适当的分组和排序.sort_index(by=['col_a', 'col_b']),现在只需转到该新列并标记每一行。

回答by Andy Hayden

There's cumcount, for precisely this case:

cumcount,对于这种情况:

df['col_c'] = g.cumcount()

As it says in the docs:

正如文档中所说:

Number each item in each group from 0 to the length of that group - 1.

从 0 到该组的长度 - 1 为每个组中的每个项目编号。



Original answer (before cumcount was defined).

原始答案(在定义 cumcount 之前)。

You could create a helper function to do this:

您可以创建一个辅助函数来执行此操作:

def add_col_c(x):
    x['col_c'] = np.arange(len(x))
    return x

First sort by column col_a:

首先按列 col_a 排序:

In [11]: df.sort('col_a', inplace=True)

then apply this function across each group:

然后在每个组中应用这个函数:

In [12]: g = df.groupby('col_a', as_index=False)

In [13]: g.apply(add_col_c)
Out[13]:
  col_a  col_b  col_c
3     A      3      0
8     A      8      1
0     A      0      2
4     A      4      3
6     B      6      0
1     B      1      1
7     B      7      2
9     C      9      0
2     C      2      1
5     C      5      2

In order to get 1,2,...you couls use np.arange(1, len(x) + 1).

为了让1,2,...你可以使用np.arange(1, len(x) + 1).

回答by andrew

The given answers both involve calling a python function for each group, and if you have many groups a vectorized approach should be faster (I havent checked).

给出的答案都涉及为每个组调用一个 python 函数,如果你有很多组,矢量化方法应该更快(我还没有检查过)。

Here is my pure numpy suggestion:

这是我纯粹的 numpy 建议:

In [5]: df.sort(['col_a', 'col_b'], inplace=True, ascending=(False, False))
In [6]: sizes = df.groupby('col_a', sort=False).size().values
In [7]: df['col_c'] = np.arange(sizes.sum()) - np.repeat(sizes.cumsum() - sizes, sizes)
In [8]: print df
  col_a  col_b  col_c
9     C      9      0
5     C      5      1
2     C      2      2
7     B      7      0
6     B      6      1
1     B      1      2
8     A      8      0
4     A      4      1
3     A      3      2
0     A      0      3

回答by waitingkuo

You could define your own function to deal with that:

您可以定义自己的函数来处理:

In [58]: def func(x):
   ....:     x['col_c'] = x['col_a'].argsort() + 1 
   ....:     return x
   ....: 

In [59]: df.groupby('col_a').apply(func)
Out[59]: 
  col_a  col_b  col_c
0     A      0      1   
3     A      3      2   
4     A      4      3   
8     A      8      4   
1     B      1      1   
6     B      6      2   
7     B      7      3   
2     C      2      1   
5     C      5      2   
9     C      9      3