Python 从熊猫数据框中删除标题列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/36688022/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Removing header column from pandas dataframe
提问by user308827
I have the foll. dataframe:
我有一个愚蠢的。数据框:
df
df
A B
0 23 12
1 21 44
2 98 21
How do I remove the column names A
and B
from this dataframe? One way might be to write it into a csv file and then read it in specifying header=None. is there a way to do that without writing out to csv and re-reading?
如何删除列名A
,并B
从该数据帧?一种方法可能是将其写入 csv 文件,然后在指定 header=None 时读取它。有没有办法在不写出 csv 并重新阅读的情况下做到这一点?
回答by jezrael
I think you cant remove column names, only reset them by range
with shape
:
我认为你不能删除列名,只能通过重新设置range
有shape
:
print df.shape[1]
2
print range(df.shape[1])
[0, 1]
df.columns = range(df.shape[1])
print df
0 1
0 23 12
1 21 44
2 98 21
This is same as using to_csv
and read_csv
:
print df.to_csv(header=None,index=False)
23,12
21,44
98,21
print pd.read_csv(io.StringIO(u""+df.to_csv(header=None,index=False)), header=None)
0 1
0 23 12
1 21 44
2 98 21
Next solution with skiprows
:
下一个解决方案skiprows
:
print df.to_csv(index=False)
A,B
23,12
21,44
98,21
print pd.read_csv(io.StringIO(u""+df.to_csv(index=False)), header=None, skiprows=1)
0 1
0 23 12
1 21 44
2 98 21
回答by Max
How to get rid of a header(first row) and an index(first column).
如何摆脱标题(第一行)和索引(第一列)。
To write to CSV file:
写入 CSV 文件:
df = pandas.DataFrame(your_array)
df.to_csv('your_array.csv', header=False, index=False)
To read from CSV file:
从 CSV 文件中读取:
df = pandas.read_csv('your_array.csv')
a = df.values
If you want to read a CSV file that doesn't contain a header, pass additional parameter header
:
如果要读取不包含标题的 CSV 文件,请传递附加参数header
:
df = pandas.read_csv('your_array.csv', header=None)