Python LogisticRegression.predict_proba 的 scikit-learn 返回值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/36681449/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
scikit-learn return value of LogisticRegression.predict_proba
提问by Zelphir Kaltstahl
What exactly does the LogisticRegression.predict_proba
function return?
LogisticRegression.predict_proba
函数究竟返回什么?
In my example I get a result like this:
在我的示例中,我得到如下结果:
[[ 4.65761066e-03 9.95342389e-01]
[ 9.75851270e-01 2.41487300e-02]
[ 9.99983374e-01 1.66258341e-05]]
From other calculations, using the sigmoid function, I know, that the second column are probabilities. The documentationsays, that the first column are n_samples
, but that can't be, because my samples are reviews, which are texts and not numbers. The documentation also says, that the second column are n_classes
. That certainly can't be, since I only have two classes (namely +1
and -1
) and the function is supposed to be about calculating probabilities of samples really being of a class, but not the classes themselves.
从其他计算中,使用 sigmoid 函数,我知道第二列是概率。该文件说,第一列是n_samples
,但那是不可能的,因为我的样品的评价,这是文字和数字没有。文档还说,第二列是n_classes
. 那当然不可能,因为我只有两个类(即+1
和-1
)并且该函数应该是关于计算样本真正属于一个类的概率,而不是类本身。
What is the first column really and why it is there?
真正的第一列是什么,为什么会出现在那里?
回答by iulian
4.65761066e-03 + 9.95342389e-01 = 1
9.75851270e-01 + 2.41487300e-02 = 1
9.99983374e-01 + 1.66258341e-05 = 1
The first column is the probability that the entry has the -1
label and the second column is the probability that the entry has the +1
label.
第一列是条目具有-1
标签的概率,第二列是条目具有+1
标签的概率。
If you would like to get the predicted probabilities for the positive label only, you can use logistic_model.predict_proba(data)[:,1]
. This will yield you the [9.95342389e-01, 2.41487300e-02, 1.66258341e-05]
result.
如果您只想获得正标签的预测概率,您可以使用logistic_model.predict_proba(data)[:,1]
. 这将为您带来[9.95342389e-01, 2.41487300e-02, 1.66258341e-05]
结果。