Python pandas.io.json.json_normalize 与非常嵌套的 json

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/47242845/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 18:06:07  来源:igfitidea点击:

pandas.io.json.json_normalize with very nested json

pythonjsonpython-3.xpandasnormalize

提问by Daniel Vargas

I have been trying to normalizea very nested json file I will later analyze. What I am struggling with is how to go more than one level deep to normalize.

我一直在尝试normalize一个非常嵌套的 json 文件,我稍后会分析。我正在努力解决的是如何深入到一个层次来规范化。

I went through the pandas.io.json.json_normalizedocumentation, since it does exactly what I want it to do.

我浏览了pandas.io.json.json_normalize文档,因为它完全符合我的要求。

I have been able to normalize part of it and now understand how dictionaries work, but I am still not there.

我已经能够规范它的一部分,现在了解字典是如何工作的,但我仍然不在那里。

With below code I am able to get only the first level.

使用以下代码,我只能获得第一级。

import json
import pandas as pd
from pandas.io.json import json_normalize

with open('authors_sample.json') as f:
    d = json.load(f)

raw = json_normalize(d['hits']['hits'])

authors = json_normalize(data = d['hits']['hits'], 
                         record_path = '_source', 
                         meta = ['_id', ['_source', 'journal'], ['_source', 'title'], 
                                 ['_source', 'normalized_venue_name']
                                 ])

I am trying to 'dig' into the 'authors' dictionary with below code, but the record_path = ['_source', 'authors']throws me TypeError: string indices must be integers. As far as I understand json_normalizethe logic should be good, but I still don't quite understand how to dive into a json with dictvs list.

我试图用下面的代码“挖掘”到“作者”字典中,但record_path = ['_source', 'authors']抛出了我TypeError: string indices must be integers。据我了解json_normalize逻辑应该是好的,但我仍然不太明白如何使用dictvs深入研究 json list

I even went through this simple example.

我什至经历了这个简单的例子

authors = json_normalize(data = d['hits']['hits'], 
                         record_path = ['_source', 'authors'], 
                         meta = ['_id', ['_source', 'journal'], ['_source', 'title'], 
                                 ['_source', 'normalized_venue_name']
                                 ])

Below is a chunk of the json file (5 records).

下面是一部分 json 文件(5 条记录)。

{u'_shards': {u'failed': 0, u'successful': 5, u'total': 5},
 u'hits': {u'hits': [{u'_id': u'7CB3F2AD',
    u'_index': u'scibase_listings',
    u'_score': 1.0,
    u'_source': {u'authors': None,
     u'deleted': 0,
     u'description': None,
     u'doi': u'',
     u'is_valid': 1,
     u'issue': None,
     u'journal': u'Physical Review Letters',
     u'link': None,
     u'meta_description': None,
     u'meta_keywords': None,
     u'normalized_venue_name': u'phys rev lett',
     u'pages': None,
     u'parent_keywords': [u'Chromatography',
      u'Quantum mechanics',
      u'Particle physics',
      u'Quantum field theory',
      u'Analytical chemistry',
      u'Quantum chromodynamics',
      u'Physics',
      u'Mass spectrometry',
      u'Chemistry'],
     u'pub_date': u'1987-03-02 00:00:00',
     u'pubtype': None,
     u'rating_avg_weighted': 0,
     u'rating_clarity': 0.0,
     u'rating_clarity_weighted': 0.0,
     u'rating_innovation': 0.0,
     u'rating_innovation_weighted': 0.0,
     u'rating_num_weighted': 0,
     u'rating_reproducability': 0,
     u'rating_reproducibility_weighted': 0.0,
     u'rating_versatility': 0.0,
     u'rating_versatility_weighted': 0.0,
     u'review_count': 0,
     u'tag': [u'mass spectra', u'elementary particles', u'bound states'],
     u'title': u'Evidence for a new meson: A quasinuclear NN-bar bound state',
     u'userAvg': 0.0,
     u'user_id': None,
     u'venue_name': u'Physical Review Letters',
     u'views_count': 0,
     u'volume': None},
    u'_type': u'listing'},
   {u'_id': u'7AF8EBC3',
    u'_index': u'scibase_listings',
    u'_score': 1.0,
    u'_source': {u'authors': [{u'affiliations': [u'Punjabi University'],
       u'author_id': u'780E3459',
       u'author_name': u'munish puri'},
      {u'affiliations': [u'Punjabi University'],
       u'author_id': u'48D92C79',
       u'author_name': u'rajesh dhaliwal'},
      {u'affiliations': [u'Punjabi University'],
       u'author_id': u'7D9BD37C',
       u'author_name': u'r s singh'}],
     u'deleted': 0,
     u'description': None,
     u'doi': u'',
     u'is_valid': 1,
     u'issue': None,
     u'journal': u'Journal of Industrial Microbiology & Biotechnology',
     u'link': None,
     u'meta_description': None,
     u'meta_keywords': None,
     u'normalized_venue_name': u'j ind microbiol biotechnol',
     u'pages': None,
     u'parent_keywords': [u'Nuclear medicine',
      u'Psychology',
      u'Hydrology',
      u'Chromatography',
      u'X-ray crystallography',
      u'Nuclear fusion',
      u'Medicine',
      u'Fluid dynamics',
      u'Thermodynamics',
      u'Physics',
      u'Gas chromatography',
      u'Radiobiology',
      u'Engineering',
      u'Organic chemistry',
      u'High-performance liquid chromatography',
      u'Chemistry',
      u'Organic synthesis',
      u'Psychotherapist'],
     u'pub_date': u'2008-04-04 00:00:00',
     u'pubtype': None,
     u'rating_avg_weighted': 0,
     u'rating_clarity': 0.0,
     u'rating_clarity_weighted': 0.0,
     u'rating_innovation': 0.0,
     u'rating_innovation_weighted': 0.0,
     u'rating_num_weighted': 0,
     u'rating_reproducability': 0,
     u'rating_reproducibility_weighted': 0.0,
     u'rating_versatility': 0.0,
     u'rating_versatility_weighted': 0.0,
     u'review_count': 0,
     u'tag': [u'flow rate',
      u'operant conditioning',
      u'packed bed reactor',
      u'immobilized enzyme',
      u'specific activity'],
     u'title': u'Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin',
     u'userAvg': 0.0,
     u'user_id': None,
     u'venue_name': u'Journal of Industrial Microbiology & Biotechnology',
     u'views_count': 0,
     u'volume': None},
    u'_type': u'listing'},
   {u'_id': u'7521A721',
    u'_index': u'scibase_listings',
    u'_score': 1.0,
    u'_source': {u'authors': [{u'author_id': u'7FF872BC',
       u'author_name': u'barbara eileen ryan'}],
     u'deleted': 0,
     u'description': None,
     u'doi': u'',
     u'is_valid': 1,
     u'issue': None,
     u'journal': u'The American Historical Review',
     u'link': None,
     u'meta_description': None,
     u'meta_keywords': None,
     u'normalized_venue_name': u'american historical review',
     u'pages': None,
     u'parent_keywords': [u'Social science',
      u'Politics',
      u'Sociology',
      u'Law'],
     u'pub_date': u'1992-01-01 00:00:00',
     u'pubtype': None,
     u'rating_avg_weighted': 0,
     u'rating_clarity': 0.0,
     u'rating_clarity_weighted': 0.0,
     u'rating_innovation': 0.0,
     u'rating_innovation_weighted': 0.0,
     u'rating_num_weighted': 0,
     u'rating_reproducability': 0,
     u'rating_reproducibility_weighted': 0.0,
     u'rating_versatility': 0.0,
     u'rating_versatility_weighted': 0.0,
     u'review_count': 0,
     u'tag': [u'social movements'],
     u'title': u"Feminism and the women's movement : dynamics of change in social movement ideology, and activism",
     u'userAvg': 0.0,
     u'user_id': None,
     u'venue_name': u'The American Historical Review',
     u'views_count': 0,
     u'volume': None},
    u'_type': u'listing'},
   {u'_id': u'7DAEB9A4',
    u'_index': u'scibase_listings',
    u'_score': 1.0,
    u'_source': {u'authors': [{u'author_id': u'0299B8E9',
       u'author_name': u'fraser j harbutt'}],
     u'deleted': 0,
     u'description': None,
     u'doi': u'',
     u'is_valid': 1,
     u'issue': None,
     u'journal': u'The American Historical Review',
     u'link': None,
     u'meta_description': None,
     u'meta_keywords': None,
     u'normalized_venue_name': u'american historical review',
     u'pages': None,
     u'parent_keywords': [u'Superconductivity',
      u'Nuclear fusion',
      u'Geology',
      u'Chemistry',
      u'Metallurgy'],
     u'pub_date': u'1988-01-01 00:00:00',
     u'pubtype': None,
     u'rating_avg_weighted': 0,
     u'rating_clarity': 0.0,
     u'rating_clarity_weighted': 0.0,
     u'rating_innovation': 0.0,
     u'rating_innovation_weighted': 0.0,
     u'rating_num_weighted': 0,
     u'rating_reproducability': 0,
     u'rating_reproducibility_weighted': 0.0,
     u'rating_versatility': 0.0,
     u'rating_versatility_weighted': 0.0,
     u'review_count': 0,
     u'tag': [u'iron'],
     u'title': u'The iron curtain : Churchill, America, and the origins of the Cold War',
     u'userAvg': 0.0,
     u'user_id': None,
     u'venue_name': u'The American Historical Review',
     u'views_count': 0,
     u'volume': None},
    u'_type': u'listing'},
   {u'_id': u'7B3236C5',
    u'_index': u'scibase_listings',
    u'_score': 1.0,
    u'_source': {u'authors': [{u'author_id': u'7DAB7B72',
       u'author_name': u'richard m freeland'}],
     u'deleted': 0,
     u'description': None,
     u'doi': u'',
     u'is_valid': 1,
     u'issue': None,
     u'journal': u'The American Historical Review',
     u'link': None,
     u'meta_description': None,
     u'meta_keywords': None,
     u'normalized_venue_name': u'american historical review',
     u'pages': None,
     u'parent_keywords': [u'Political Science', u'Economics'],
     u'pub_date': u'1985-01-01 00:00:00',
     u'pubtype': None,
     u'rating_avg_weighted': 0,
     u'rating_clarity': 0.0,
     u'rating_clarity_weighted': 0.0,
     u'rating_innovation': 0.0,
     u'rating_innovation_weighted': 0.0,
     u'rating_num_weighted': 0,
     u'rating_reproducability': 0,
     u'rating_reproducibility_weighted': 0.0,
     u'rating_versatility': 0.0,
     u'rating_versatility_weighted': 0.0,
     u'review_count': 0,
     u'tag': [u'foreign policy'],
     u'title': u'The Truman Doctrine and the origins of McCarthyism : foreign policy, domestic politics, and internal security, 1946-1948',
     u'userAvg': 0.0,
     u'user_id': None,
     u'venue_name': u'The American Historical Review',
     u'views_count': 0,
     u'volume': None},
    u'_type': u'listing'}],
  u'max_score': 1.0,
  u'total': 36429433},
 u'timed_out': False,
 u'took': 170}

采纳答案by Martijn Pieters

In the pandas example (below) what do the brackets mean? Is there a logic to be followed to go deeper with the []. [...]

result = json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])

在熊猫示例(如下)中,括号是什么意思?是否有一个逻辑可以用来更深入地使用 []. [...]

result = json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])

Each string or list of strings in the ['state', 'shortname', ['info', 'governor']]value is a path to an element to include, in addition to the selected rows. The second argument json_normalize()argument (record_path, set to 'counties'in the documentation example) tells the function how to select elements from the input data structure that make up the rows in the output, and the metapaths adds further metadata that will be included with each of the rows. Think of these as table joins in a database, if you will.

除了选定的行之外,['state', 'shortname', ['info', 'governor']]值中的每个字符串或字符串列表都是要包含的元素的路径。第二个参数参数(在文档示例中设置为)告诉函数如何从构成输出行的输入数据结构中选择元素,路径添加将包含在每一行中的进一步元数据。如果愿意,可以将这些视为数据库中的表连接。json_normalize()record_path'counties'meta

The input for the US Statesdocumentation examplehas two dictionaries in a list, and both of these dictionaries have a countieskey that references another list of dicts:

对于输入美国各州文档例如在一个列表两个字典,而且这两个字典有一个counties关键是引用类型的字典的另一个列表:

>>> data = [{'state': 'Florida',
...          'shortname': 'FL',
...         'info': {'governor': 'Rick Scott'},
...         'counties': [{'name': 'Dade', 'population': 12345},
...                      {'name': 'Broward', 'population': 40000},
...                      {'name': 'Palm Beach', 'population': 60000}]},
...         {'state': 'Ohio',
...          'shortname': 'OH',
...          'info': {'governor': 'John Kasich'},
...          'counties': [{'name': 'Summit', 'population': 1234},
...                       {'name': 'Cuyahoga', 'population': 1337}]}]
>>> pprint(data[0]['counties'])
[{'name': 'Dade', 'population': 12345},
 {'name': 'Broward', 'population': 40000},
 {'name': 'Palm Beach', 'population': 60000}]
>>> pprint(data[1]['counties'])
[{'name': 'Summit', 'population': 1234},
 {'name': 'Cuyahoga', 'population': 1337}]

Between them there are 5 rows of data to use in the output:

在它们之间有 5 行数据用于输出:

>>> json_normalize(data, 'counties')
         name  population
0        Dade       12345
1     Broward       40000
2  Palm Beach       60000
3      Summit        1234
4    Cuyahoga        1337

The metaargument then names some elements that live nextto those countieslists, and those are then merged in separately. The values from the first data[0]dictionary for those metaelements are ('Florida', 'FL', 'Rick Scott'), respectively, and for data[1]the values are ('Ohio', 'OH', 'John Kasich'), so you see those values attached to the countiesrows that came from the same top-level dictionary, repeated 3 and 2 times respectively:

meta然后该参数命名了这些列表旁边的一些元素,然后将这些元素counties单独合并。data[0]这些meta元素的第一个字典中的值('Florida', 'FL', 'Rick Scott')分别是 ,而data[1]值是('Ohio', 'OH', 'John Kasich'),因此您会看到这些值附加到counties来自同一顶级字典的行上,分别重复了 3 次和 2 次:

>>> data[0]['state'], data[0]['shortname'], data[0]['info']['governor']
('Florida', 'FL', 'Rick Scott')
>>> data[1]['state'], data[1]['shortname'], data[1]['info']['governor']
('Ohio', 'OH', 'John Kasich')
>>> json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
         name  population    state shortname info.governor
0        Dade       12345  Florida        FL    Rick Scott
1     Broward       40000  Florida        FL    Rick Scott
2  Palm Beach       60000  Florida        FL    Rick Scott
3      Summit        1234     Ohio        OH   John Kasich
4    Cuyahoga        1337     Ohio        OH   John Kasich

So, if you pass in a list for the metaargument, then each element in the list is a separate path, and each of those separate paths identifies data to add to the rows in the output.

因此,如果您为meta参数传入一个列表,则列表中的每个元素都是一个单独的路径,并且每个单独的路径都标识要添加到输出行中的数据。

In yourexample JSON, there are only a few nested lists to elevate with the first argument, like 'counties'did in the example. The only example in that datastructure is the nested 'authors'key; you'd have to extract each ['_source', 'authors']path, after which you can add other keys from the parent object to augment those rows.

您的示例 JSON 中,只有几个嵌套列表可以使用第一个参数提升,就像'counties'示例中那样。该数据结构中唯一的示例是嵌套'authors'键;您必须提取每个['_source', 'authors']路径,然后您可以从父对象添加其他键以增加这些行。

The second metaargument then pulls in the _idkey from the outermost objects, followed by the nested ['_source', 'title']and ['_source', 'journal']nested paths.

然后第二个meta参数_id从最外面的对象中拉入键,然后是嵌套['_source', 'title']['_source', 'journal']嵌套路径。

The record_pathargument takes the authorslists as the starting point, these look like:

record_path参数可authors列出为出发点,这些样子:

>>> d['hits']['hits'][0]['_source']['authors']   # this value is None, and is skipped
>>> d['hits']['hits'][1]['_source']['authors']
[{'affiliations': ['Punjabi University'],
  'author_id': '780E3459',
  'author_name': 'munish puri'},
 {'affiliations': ['Punjabi University'],
  'author_id': '48D92C79',
  'author_name': 'rajesh dhaliwal'},
 {'affiliations': ['Punjabi University'],
  'author_id': '7D9BD37C',
  'author_name': 'r s singh'}]
>>> d['hits']['hits'][2]['_source']['authors']
[{'author_id': '7FF872BC',
  'author_name': 'barbara eileen ryan'}]
>>> # etc.

and so gives you the following rows:

所以给你以下几行:

>>> json_normalize(d['hits']['hits'], ['_source', 'authors'])
           affiliations author_id          author_name
0  [Punjabi University]  780E3459          munish puri
1  [Punjabi University]  48D92C79      rajesh dhaliwal
2  [Punjabi University]  7D9BD37C            r s singh
3                   NaN  7FF872BC  barbara eileen ryan
4                   NaN  0299B8E9     fraser j harbutt
5                   NaN  7DAB7B72   richard m freeland

and then we can use the third metaargument to add more columns like _id, _source.titleand _source.journal, using ['_id', ['_source', 'journal'], ['_source', 'title']]:

然后我们可以使用第三个meta参数添加更多列,例如_id,_source.title_source.journal,使用['_id', ['_source', 'journal'], ['_source', 'title']]

>>> json_normalize(
...     data['hits']['hits'],
...     ['_source', 'authors'],
...     ['_id', ['_source', 'journal'], ['_source', 'title']]
... )
           affiliations author_id          author_name       _id   \
0  [Punjabi University]  780E3459          munish puri  7AF8EBC3  
1  [Punjabi University]  48D92C79      rajesh dhaliwal  7AF8EBC3
2  [Punjabi University]  7D9BD37C            r s singh  7AF8EBC3
3                   NaN  7FF872BC  barbara eileen ryan  7521A721
4                   NaN  0299B8E9     fraser j harbutt  7DAEB9A4
5                   NaN  7DAB7B72   richard m freeland  7B3236C5

                                     _source.journal
0  Journal of Industrial Microbiology & Biotechno...
1  Journal of Industrial Microbiology & Biotechno...
2  Journal of Industrial Microbiology & Biotechno...
3                     The American Historical Review
4                     The American Historical Review
5                     The American Historical Review

                                       _source.title  \
0  Development of a stable continuous flow immobi...
1  Development of a stable continuous flow immobi...
2  Development of a stable continuous flow immobi...
3  Feminism and the women's movement : dynamics o...
4  The iron curtain : Churchill, America, and the...
5  The Truman Doctrine and the origins of McCarth...

回答by Sander Vanden Hautte

You can also have a look at the library flatten_json, which does not require you to write column hierarchies as in json_normalize:

您还可以查看库flatten_json,它不需要您像 json_normalize 那样编写列层次结构:

from flatten_json import flatten

data = d['hits']['hits']
dict_flattened = (flatten(record, '.') for record in data)
df = pd.DataFrame(dict_flattened)
print(df)

See https://github.com/amirziai/flatten.

请参阅https://github.com/amirziai/flatten