pandas 对数据框中列中的数据进行分类
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/38936854/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Categorize Data in a column in dataframe
提问by Nathaniel Babalola
I have a column of numbers in my dataframe, i want to categorize these numbers into e.g high , low, excluded. How do i accomplish that. I am clueless , i have tried looking at the cut function and category datatype.
我的数据框中有一列数字,我想将这些数字分类为例如高、低、排除。我如何做到这一点。我一无所知,我曾尝试查看剪切函数和类别数据类型。
回答by ptrj
A short example with pd.cut
.
一个简短的例子pd.cut
。
Let's start with some data frame:
让我们从一些数据框开始:
df = pd.DataFrame({'A': [0, 8, 2, 5, 9, 15, 1]})
and, say, we want to assign the numbers to the following categories: 'low'
if a number is in the interval [0, 2]
, 'mid'
for (2, 8]
, 'high'
for (8, 10]
, and we exclude numbers above 10 (or below 0).
并且,比如说,我们想要将数字分配到以下类别:'low'
如果一个数字在区间[0, 2]
、'mid'
for (2, 8]
、'high'
for 中(8, 10]
,我们排除大于 10(或小于 0)的数字。
Thus, we have 3 bins with edges: 0, 2, 8, 10. Now, we can use cut
as follows:
因此,我们有 3 个带边的 bin:0、2、8、10。现在,我们可以使用cut
如下:
pd.cut(df['A'], bins=[0, 2, 8, 10], include_lowest=True)
Out[33]:
0 [0, 2]
1 (2, 8]
2 [0, 2]
3 (2, 8]
4 (8, 10]
5 NaN
6 [0, 2]
Name: A, dtype: category
Categories (3, object): [[0, 2] < (2, 8] < (8, 10]]
The argument include_lowest=True
includes the left end of the first interval. (If you want intervals open on the right, then use right=False
.)
参数include_lowest=True
包括第一个间隔的左端。(如果您希望在右侧打开间隔,请使用right=False
。)
The intervals are probably not the best names for the categories. So, let's use names: low/mid/high
:
间隔可能不是类别的最佳名称。所以,让我们使用名称low/mid/high
:
pd.cut(df['A'], bins=[0, 2, 8, 10], include_lowest=True, labels=['low', 'mid', 'high'])
Out[34]:
0 low
1 mid
2 low
3 mid
4 high
5 NaN
6 low
Name: A, dtype: category
Categories (3, object): [low < mid < high]
The excluded number 15 gets a "category" NaN
. If you prefer a more meaningful name, probably the simplest solution (there're other ways to deal with NaN's) is to add another bin and a category name, for example:
排除的数字 15 获得一个“类别” NaN
。如果您更喜欢更有意义的名称,可能最简单的解决方案(还有其他方法可以处理 NaN)是添加另一个 bin 和类别名称,例如:
pd.cut(df['A'], bins=[0, 2, 8, 10, 1000], include_lowest=True, labels=['low', 'mid', 'high', 'excluded'])
Out[35]:
0 low
1 mid
2 low
3 mid
4 high
5 excluded
6 low
Name: A, dtype: category
Categories (4, object): [low < mid < high < excluded]
回答by draco_alpine
This question is pretty broad, but a good place to start might be this page in the documentation:
这个问题非常广泛,但一个很好的起点可能是文档中的这个页面:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
Or you could look into numpy.where
或者你可以看看 numpy.where
import numpy as np
df['is_high'] = np.where(df.['column_of_interest'] > 5 ,1,0)